Suppr超能文献

通过钴调控二氧化钛薄膜的能带工程化实现对细菌呼吸和活力的氧化损伤

Band Gap Engineering of Titania Film through Cobalt Regulation for Oxidative Damage of Bacterial Respiration and Viability.

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China.

Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China.

出版信息

ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27475-27490. doi: 10.1021/acsami.7b06867. Epub 2017 Aug 10.

Abstract

Biomaterial-related bacterial infections cause patient suffering, mortality, and extended periods of hospitalization and impose a substantial burden on medical systems. In this context, understanding the interactions between nanomaterials and bacteria is clinically significant. Herein, TiO-based heterojunctions, including Co-TiO, CoO-TiO, and CoO-TiO, were first designed by optimizing magnetron sputtering to establish a platform to explore the interactions between nanomaterials and bacteria. We found that the energy band bending and band gap narrowing were effectively promoted at the contact interface of the heterojunctions, which have the ability to induce abiotic reactive oxygen species formation. Using methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis, in vitro studies showed that the heterojunctions of Co-TiO, CoO-TiO, and especially CoO-TiO can effectively downregulate the expression levels of bacterial respiratory genes and cause oxidative damage to bacterial membrane respiration and viability. As a result, the surfaces of the heterojunctions possess a favorable antiadherent bacterial activity. Moreover, using an osteomyelitis model, the preclinical study on rats further confirmed the favorable anti-infection effect of the elaborately designed heterojunctions (especially CoO-TiO). We hope this study can provide new insights into the surface antibacterial design of biomaterials using energy band engineering for both basic research and clinical needs. Meanwhile, this attempt may also contribute to expanding the biomedical applications of cobalt-based nanoparticles for the treatment of antibiotic-resistant infections.

摘要

生物材料相关的细菌感染会导致患者痛苦、死亡,延长住院时间,并给医疗系统带来巨大负担。在这种情况下,了解纳米材料与细菌之间的相互作用具有重要的临床意义。本文通过优化磁控溅射首次设计了基于 TiO 的异质结(包括 Co-TiO、CoO-TiO 和 CoO-TiO),以此来构建一个平台,以探索纳米材料与细菌之间的相互作用。我们发现异质结接触界面有效促进了能带弯曲和带隙变窄,这使其具有诱导非生物活性氧物质形成的能力。通过使用耐甲氧西林金黄色葡萄球菌和表皮葡萄球菌进行体外研究,结果表明 Co-TiO、CoO-TiO 和 CoO-TiO 异质结可以有效下调细菌呼吸基因的表达水平,并导致细菌膜呼吸和活力的氧化损伤。因此,异质结表面具有良好的抗细菌黏附活性。此外,利用骨髓炎大鼠模型进行的临床前研究进一步证实了精心设计的异质结(特别是 CoO-TiO)具有良好的抗感染效果。我们希望这项研究能为基于能带工程的生物材料表面抗菌设计提供新的见解,既满足基础研究的需求,也满足临床的需要。同时,这一尝试也可能有助于扩大钴基纳米颗粒在治疗抗生素耐药性感染方面的生物医学应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验