The Institute of Cancer Research, London, United Kingdom.
The Royal Marsden NHS Foundation Trust, London, United Kingdom.
Clin Cancer Res. 2017 Oct 15;23(20):6070-6077. doi: 10.1158/1078-0432.CCR-17-0972. Epub 2017 Jul 27.
Precise detection of copy number aberrations (CNA) from tumor biopsies is critically important to the treatment of metastatic prostate cancer. The use of targeted panel next-generation sequencing (NGS) is inexpensive, high throughput, and easily feasible, allowing single-nucleotide variant calls, but CNA estimation from this remains challenging. We evaluated CNVkit for CNA identification from amplicon-based targeted NGS in a cohort of 110 fresh castration-resistant prostate cancer biopsies and used capture-based whole-exome sequencing (WES), array comparative genomic hybridization (aCGH), and FISH to explore the viability of this approach. We showed that this method produced highly reproducible CNA results ( = 0.92), with the use of pooled germline DNA as a coverage reference supporting precise CNA estimation. CNA estimates from targeted NGS were comparable with WES ( = 0.86) and aCGH ( = 0.7); for key selected genes (, and ), CNA estimation correlated well with WES ( = 0.91) and aCGH ( = 0.84) results. The frequency of CNAs in our population was comparable with that previously described (i.e., deep deletions: 4.5%; 8.2%; 15.5%; amplification: AR 45.5%; gain: MYC 31.8%). We also showed, utilizing FISH, that CNA estimation can be impacted by intratumor heterogeneity and demonstrated that tumor microdissection allows NGS to provide more precise CNA estimates. Targeted NGS and CNVkit-based analyses provide a robust, precise, high-throughput, and cost-effective method for CNA estimation for the delivery of more precise patient care. .
精确检测肿瘤活检中的拷贝数异常(CNA)对于转移性前列腺癌的治疗至关重要。靶向 panel 下一代测序(NGS)的使用具有成本低、高通量和易于实施的特点,允许进行单核苷酸变异体检测,但从这种方法估计 CNA 仍然具有挑战性。我们评估了 CNVkit 在 110 例新鲜去势抵抗性前列腺癌活检的基于扩增子的靶向 NGS 队列中用于 CNA 识别的能力,并使用基于捕获的全外显子组测序(WES)、阵列比较基因组杂交(aCGH)和 FISH 来探索这种方法的可行性。我们表明,该方法产生了高度可重复的 CNA 结果( = 0.92),使用混合的种系 DNA 作为覆盖参考支持精确的 CNA 估计。靶向 NGS 的 CNA 估计与 WES( = 0.86)和 aCGH( = 0.7)相当;对于关键选择的基因(,和),CNA 估计与 WES( = 0.91)和 aCGH( = 0.84)的结果相关性良好。我们人群中的 CNA 频率与先前描述的相似(即,深度缺失:4.5%;8.2%;15.5%;扩增:AR 45.5%;增益:MYC 31.8%)。我们还利用 FISH 表明,CNA 估计会受到肿瘤内异质性的影响,并表明肿瘤微切割允许 NGS 提供更精确的 CNA 估计。靶向 NGS 和基于 CNVkit 的分析为 CNA 估计提供了一种强大、精确、高通量且具有成本效益的方法,可实现更精确的患者护理。