Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas.
J Mol Diagn. 2022 Jul;24(7):760-774. doi: 10.1016/j.jmoldx.2022.03.011. Epub 2022 Apr 26.
Somatic copy number alterations (SCNAs) in tumors are clinically significant diagnostic, prognostic, and predictive biomarkers. SCNA detection from targeted next-generation sequencing panels is increasingly common in clinical practice; however, detailed descriptions of optimization and validation of SCNA pipelines for small targeted panels are limited. This study describes the validation and implementation of a tumor-only SCNA pipeline using CNVkit, augmented with custom modules and optimized for clinical implementation by testing reference materials and clinical tumor samples with different classes of copy number variation (CNV; amplification, single copy loss, and biallelic loss). Using wet-bench and in silico methods, various parameters impacting CNV calling, including assay-intrinsic variables (establishment of normal reference and sequencing coverage), sample-intrinsic variables (tumor purity and sample quality), and CNV algorithm-intrinsic variables (bin size), were optimized. The pipeline was trained and tested on an optimization cohort and validated using an independent cohort with a sensitivity and specificity of 100% and 93%, respectively. Using custom modules, intragenic CNVs with breakpoints within tumor suppressor genes were uncovered. Using the validated pipeline, re-analysis of 28 pediatric solid tumors that had been previously profiled for mutations identified SCNAs in 86% (24/28) samples, with 46% (13/28) samples harboring findings of potential clinical relevance. Our report highlights the importance of rigorous establishment of performance characteristics of SCNA pipelines and presents a detailed validation framework for optimal SCNA detection in targeted sequencing panels.
肿瘤体细胞拷贝数改变(SCNAs)是具有临床意义的诊断、预后和预测生物标志物。在临床实践中,越来越多地使用靶向下一代测序panel 来检测 SCNAs;然而,针对小型靶向 panel 的 SCNAs 管道的优化和验证的详细描述是有限的。本研究描述了使用 CNVkit 进行肿瘤特异性 SCNAs 管道的验证和实施,该管道使用了自定义模块,并通过测试参考材料和具有不同拷贝数变异(CNV;扩增、单拷贝缺失和双等位基因缺失)类别的临床肿瘤样本进行了临床实施的优化。使用湿实验和计算方法,优化了影响 CNV 调用的各种参数,包括实验内在变量(建立正常参考和测序覆盖)、样本内在变量(肿瘤纯度和样本质量)和 CNV 算法内在变量(bin 大小)。该管道在优化队列中进行了训练和测试,并在独立队列中进行了验证,其灵敏度和特异性分别为 100%和 93%。使用自定义模块,发现了位于肿瘤抑制基因内的内含子 CNVs 的断点。使用经过验证的管道,对先前已进行突变分析的 28 例儿科实体瘤进行重新分析,在 86%(24/28)的样本中发现了 SCNAs,其中 46%(13/28)的样本存在潜在临床意义的发现。我们的报告强调了严格建立 SCNAs 管道性能特征的重要性,并提出了针对靶向测序 panel 中最佳 SCNAs 检测的详细验证框架。