Suppr超能文献

用于靶向测序panel 中体细胞拷贝数检测的验证框架。

A Validation Framework for Somatic Copy Number Detection in Targeted Sequencing Panels.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.

Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas.

出版信息

J Mol Diagn. 2022 Jul;24(7):760-774. doi: 10.1016/j.jmoldx.2022.03.011. Epub 2022 Apr 26.

Abstract

Somatic copy number alterations (SCNAs) in tumors are clinically significant diagnostic, prognostic, and predictive biomarkers. SCNA detection from targeted next-generation sequencing panels is increasingly common in clinical practice; however, detailed descriptions of optimization and validation of SCNA pipelines for small targeted panels are limited. This study describes the validation and implementation of a tumor-only SCNA pipeline using CNVkit, augmented with custom modules and optimized for clinical implementation by testing reference materials and clinical tumor samples with different classes of copy number variation (CNV; amplification, single copy loss, and biallelic loss). Using wet-bench and in silico methods, various parameters impacting CNV calling, including assay-intrinsic variables (establishment of normal reference and sequencing coverage), sample-intrinsic variables (tumor purity and sample quality), and CNV algorithm-intrinsic variables (bin size), were optimized. The pipeline was trained and tested on an optimization cohort and validated using an independent cohort with a sensitivity and specificity of 100% and 93%, respectively. Using custom modules, intragenic CNVs with breakpoints within tumor suppressor genes were uncovered. Using the validated pipeline, re-analysis of 28 pediatric solid tumors that had been previously profiled for mutations identified SCNAs in 86% (24/28) samples, with 46% (13/28) samples harboring findings of potential clinical relevance. Our report highlights the importance of rigorous establishment of performance characteristics of SCNA pipelines and presents a detailed validation framework for optimal SCNA detection in targeted sequencing panels.

摘要

肿瘤体细胞拷贝数改变(SCNAs)是具有临床意义的诊断、预后和预测生物标志物。在临床实践中,越来越多地使用靶向下一代测序panel 来检测 SCNAs;然而,针对小型靶向 panel 的 SCNAs 管道的优化和验证的详细描述是有限的。本研究描述了使用 CNVkit 进行肿瘤特异性 SCNAs 管道的验证和实施,该管道使用了自定义模块,并通过测试参考材料和具有不同拷贝数变异(CNV;扩增、单拷贝缺失和双等位基因缺失)类别的临床肿瘤样本进行了临床实施的优化。使用湿实验和计算方法,优化了影响 CNV 调用的各种参数,包括实验内在变量(建立正常参考和测序覆盖)、样本内在变量(肿瘤纯度和样本质量)和 CNV 算法内在变量(bin 大小)。该管道在优化队列中进行了训练和测试,并在独立队列中进行了验证,其灵敏度和特异性分别为 100%和 93%。使用自定义模块,发现了位于肿瘤抑制基因内的内含子 CNVs 的断点。使用经过验证的管道,对先前已进行突变分析的 28 例儿科实体瘤进行重新分析,在 86%(24/28)的样本中发现了 SCNAs,其中 46%(13/28)的样本存在潜在临床意义的发现。我们的报告强调了严格建立 SCNAs 管道性能特征的重要性,并提出了针对靶向测序 panel 中最佳 SCNAs 检测的详细验证框架。

相似文献

引用本文的文献

本文引用的文献

7
COSMIC: the Catalogue Of Somatic Mutations In Cancer.COSMIC:癌症体细胞突变目录。
Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947. doi: 10.1093/nar/gky1015.
9
Genome doubling shapes the evolution and prognosis of advanced cancers.基因组加倍塑造了晚期癌症的进化和预后。
Nat Genet. 2018 Aug;50(8):1189-1195. doi: 10.1038/s41588-018-0165-1. Epub 2018 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验