Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
Cell Mol Life Sci. 2018 Jan;75(2):241-260. doi: 10.1007/s00018-017-2598-6. Epub 2017 Jul 27.
Mitochondrial protein synthesis is essential for the production of components of the oxidative phosphorylation system. RNA modifications in the mammalian mitochondrial translation apparatus play key roles in facilitating mitochondrial gene expression as they enable decoding of the non-conventional genetic code by a minimal set of tRNAs, and efficient and accurate protein synthesis by the mitoribosome. Intriguingly, recent transcriptome-wide analyses have also revealed modifications in mitochondrial mRNAs, suggesting that the concept of dynamic regulation of gene expression by the modified RNAs (the "epitranscriptome") extends to mitochondria. Furthermore, it has emerged that defects in RNA modification, arising from either mt-DNA mutations or mutations in nuclear-encoded mitochondrial modification enzymes, underlie multiple mitochondrial diseases. Concomitant advances in the identification of the mitochondrial RNA modification machinery and recent structural views of the mitochondrial translation apparatus now allow the molecular basis of such mitochondrial diseases to be understood on a mechanistic level.
线粒体蛋白合成对于氧化磷酸化系统组件的产生至关重要。哺乳动物线粒体翻译装置中的 RNA 修饰在促进线粒体基因表达方面发挥着关键作用,因为它们允许通过最小数量的 tRNA 对非常规遗传密码进行解码,并通过线粒体核糖体进行高效、准确的蛋白质合成。有趣的是,最近的全转录组分析还揭示了线粒体 mRNA 中的修饰,这表明修饰 RNA(“表观转录组”)对基因表达的动态调控概念扩展到了线粒体。此外,人们发现,无论是 mt-DNA 突变还是核编码线粒体修饰酶的突变引起的 RNA 修饰缺陷,都是多种线粒体疾病的基础。随着线粒体 RNA 修饰机制的鉴定以及最近对线粒体翻译装置结构的认识的不断发展,现在可以从机制层面理解这些线粒体疾病的分子基础。