Central European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty of Science, and §Department of Chemistry, Faculty of Science, Masaryk University , Kamenice 5, 625 00 Brno, Czech Republic.
Chem Rev. 2017 Aug 9;117(15):9973-10042. doi: 10.1021/acs.chemrev.7b00037. Epub 2017 Jul 28.
We review the progress achieved during the recent five years in immunochemical biosensors (immunosensors) combined with nanoparticles for enhanced sensitivity. The initial part introduces antibodies as classic recognition elements. The optical sensing part describes fluorescent, luminescent, and surface plasmon resonance systems. Amperometry, voltammetry, and impedance spectroscopy represent electrochemical transducer methods; electrochemiluminescence with photoelectric conversion constitutes a widely utilized combined method. The transducing options function together with suitable nanoparticles: metallic and metal oxides, including magnetic ones, carbon-based nanotubes, graphene variants, luminescent carbon dots, nanocrystals as quantum dots, and photon up-converting particles. These sources merged together provide extreme variability of existing nanoimmunosensing options. Finally, applications in clinical analysis (markers, tumor cells, and pharmaceuticals) and in the detection of pathogenic microorganisms, toxic agents, and pesticides in the environmental field and food products are summarized.
我们回顾了近年来在免疫化学生物传感器(免疫传感器)与纳米粒子结合以提高灵敏度方面取得的进展。开篇介绍了抗体作为经典的识别元件。光学传感部分描述了荧光、发光和表面等离子体共振系统。电流法、伏安法和阻抗光谱法代表了电化学换能器方法;光电化学转换的电致化学发光构成了一种广泛应用的组合方法。与合适的纳米粒子一起作用的换能选项有:金属和金属氧化物,包括磁性的,碳基纳米管,石墨烯变体,发光的碳点,纳米晶体作为量子点,以及光子上转换粒子。这些来源的融合为现有的纳米免疫传感选择提供了极大的多样性。最后,总结了在临床分析(标志物、肿瘤细胞和药物)以及在环境领域和食品产品中检测致病微生物、有毒剂和农药方面的应用。
Anal Chim Acta. 2016-3-17
Sensors (Basel). 2017-4-7
Adv Clin Chem. 2019-5-29
Mikrochim Acta. 2019-4-29
Biosens Bioelectron. 2015-5-25
Biosensors (Basel). 2025-7-22
Biosensors (Basel). 2025-7-21