Suppr超能文献

具有单边 Lipschitz 条件的分数阶脉冲神经网络的全局 Mittag-Leffler 稳定性分析。

Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition.

机构信息

School of Electrical Engineering, Yanshan University, Qinhuangdao 066001, China.

School of Electrical Engineering, Yanshan University, Qinhuangdao 066001, China.

出版信息

Neural Netw. 2017 Oct;94:67-75. doi: 10.1016/j.neunet.2017.06.010. Epub 2017 Jul 6.

Abstract

This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results.

摘要

本文研究了分数阶脉冲神经网络的稳定性分析问题。在激活函数的单边 Lipschitz 条件或线性增长条件下,分别分析了解的存在性。此外,利用压缩映射原理和 Lyapunov 直接法研究了具有单边 Lipschitz 条件的分数阶脉冲神经网络平衡点的存在性、唯一性和全局 Mittag-Leffler 稳定性。最后,通过数值模拟给出了一个实例,验证了所提出结果的有效性和可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验