Suppr超能文献

通过光亲和标记进行小分子相互作用组图谱绘制(SIM-PAL)以在蛋白质组范围内鉴定小分子的结合位点。

Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.

作者信息

Flaxman Hope A, Miyamoto David K, Woo Christina M

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.

出版信息

Curr Protoc Chem Biol. 2019 Dec;11(4):e75. doi: 10.1002/cpch.75.

Abstract

Identification and characterization of small molecule-protein interactions is critical to understanding the mechanism of action of bioactive small molecules. Photo-affinity labeling (PAL) enables the capture of noncovalent interactions for enrichment and unbiased analysis by mass spectrometry (MS). Quantitative proteomics of the enriched proteome reveals potential interactions, and MS characterization of binding sites provides validation and structural insight into the interactions. Here, we describe the identification of the protein targets and binding sites of a small molecule using small molecule interactome mapping by PAL (SIM-PAL). Cells are exposed to a diazirine-alkyne-functionalized small molecule, and binding interactions are covalently captured upon UV irradiation. An isotopically coded, acid-cleavable biotin azide handle is attached to the conjugated proteins using copper-catalyzed azide-alkyne cycloaddition. Biotin-labeled proteins are enriched for on-bead digestion and quantitative proteomics. Acid cleavage of the handle releases the bead-bound conjugated peptides for MS analysis and isotope-directed assignment of the binding site. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of a small molecule-conjugated protein sample following treatment of live cells Alternate Protocol: Generation of a small molecule-conjugated protein sample following treatment of cell lysate Basic Protocol 2: Copper-catalyzed azide-alkyne cycloaddition functionalization and enrichment of labeled peptides Support Protocol 1: Synthesis of acid-cleavable, isotopically coded biotin picolyl azide handle Support Protocol 2: Monitoring enrichment by immunoblotting Basic Protocol 3: Mass spectrometry analysis to identify interacting proteins and conjugation sites.

摘要

鉴定和表征小分子与蛋白质的相互作用对于理解生物活性小分子的作用机制至关重要。光亲和标记(PAL)能够捕获非共价相互作用,以便通过质谱(MS)进行富集和无偏分析。对富集蛋白质组进行定量蛋白质组学分析可揭示潜在的相互作用,而结合位点的MS表征则为相互作用提供验证和结构洞察。在此,我们描述了使用光亲和标记小分子相互作用组图谱(SIM-PAL)鉴定小分子的蛋白质靶点和结合位点的方法。将细胞暴露于重氮丙啶-炔烃功能化的小分子中,经紫外线照射后共价捕获结合相互作用。使用铜催化的叠氮化物-炔烃环加成反应,将同位素编码的、酸可裂解的生物素叠氮化物手柄连接到共轭蛋白质上。对生物素标记的蛋白质进行富集,用于珠上消化和定量蛋白质组学分析。手柄的酸裂解释放出与珠结合的共轭肽,用于MS分析和结合位点的同位素导向定位。© 2019 John Wiley & Sons, Inc. 基本方案1:活细胞处理后生成小分子共轭蛋白质样品 替代方案:细胞裂解液处理后生成小分子共轭蛋白质样品 基本方案2:铜催化的叠氮化物-炔烃环加成功能化及标记肽的富集 支持方案1:酸可裂解的、同位素编码的生物素吡啶甲基叠氮化物手柄的合成 支持方案2:通过免疫印迹监测富集情况 基本方案3:质谱分析以鉴定相互作用的蛋白质和共轭位点。

相似文献

3
Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.
J Am Chem Soc. 2018 Mar 28;140(12):4259-4268. doi: 10.1021/jacs.7b11639. Epub 2018 Mar 15.
4
Mapping the Small Molecule Interactome by Mass Spectrometry.
Biochemistry. 2018 Jan 16;57(2):186-193. doi: 10.1021/acs.biochem.7b01038. Epub 2017 Nov 10.
5
A Binding Site Hotspot Map of the FKBP12-Rapamycin-FRB Ternary Complex by Photoaffinity Labeling and Mass Spectrometry-Based Proteomics.
J Am Chem Soc. 2019 Jul 31;141(30):11759-11764. doi: 10.1021/jacs.9b03764. Epub 2019 Jul 18.
6
A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins.
Chem Commun (Camb). 2014 Oct 18;50(81):12098-100. doi: 10.1039/c4cc05246c.
7
Comparative analysis of cleavable azobenzene-based affinity tags for bioorthogonal chemical proteomics.
Chem Biol. 2010 Nov 24;17(11):1212-22. doi: 10.1016/j.chembiol.2010.09.012.
8
Synthesis of NaSO mediated cleavable affinity tag for labeling of O-GlcNAc modified proteins via azide-alkyne cycloaddition.
Bioorg Med Chem Lett. 2021 Sep 15;48:128244. doi: 10.1016/j.bmcl.2021.128244. Epub 2021 Jul 3.
10
Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells.
J Am Chem Soc. 2014 Jul 30;136(30):10777-82. doi: 10.1021/ja505517t. Epub 2014 Jul 21.

引用本文的文献

2
Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes.
Cell Chem Biol. 2024 Dec 19;31(12):2138-2155.e32. doi: 10.1016/j.chembiol.2024.10.005. Epub 2024 Nov 14.
3
Chemical proteomic mapping of reversible small molecule binding sites in native systems.
Trends Pharmacol Sci. 2024 Nov;45(11):969-981. doi: 10.1016/j.tips.2024.09.001. Epub 2024 Oct 14.
4
Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers.
Beilstein J Org Chem. 2024 Sep 12;20:2323-2341. doi: 10.3762/bjoc.20.199. eCollection 2024.
5
Investigation and Development of the BODIPY-Embedded Isotopic Signature for Chemoproteomics Labeling and Targeted Profiling.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2440-2447. doi: 10.1021/jasms.4c00246. Epub 2024 Sep 16.
6
Photo-affinity and Metabolic Labeling Probes Based on the Opioid Alkaloids.
Chembiochem. 2024 Mar 15;25(6):e202300841. doi: 10.1002/cbic.202300841. Epub 2024 Feb 19.
7
Enhanced mapping of small-molecule binding sites in cells.
Nat Chem Biol. 2024 Jul;20(7):823-834. doi: 10.1038/s41589-023-01514-z. Epub 2024 Jan 2.
8
μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping.
J Am Chem Soc. 2023 Aug 2;145(30):16289-16296. doi: 10.1021/jacs.3c03325. Epub 2023 Jul 20.
9
Multisite Labeling of Proteins Using the Ligand-Directed Reactivity of Triggerable Michael Acceptors.
Bioconjug Chem. 2023 Jun 21;34(6):1130-1138. doi: 10.1021/acs.bioconjchem.3c00155. Epub 2023 May 23.

本文引用的文献

1
Discovery of a Celecoxib Binding Site on Prostaglandin E Synthase (PTGES) with a Cleavable Chelation-Assisted Biotin Probe.
ACS Chem Biol. 2019 Dec 20;14(12):2527-2532. doi: 10.1021/acschembio.9b00511. Epub 2019 Oct 25.
2
A Binding Site Hotspot Map of the FKBP12-Rapamycin-FRB Ternary Complex by Photoaffinity Labeling and Mass Spectrometry-Based Proteomics.
J Am Chem Soc. 2019 Jul 31;141(30):11759-11764. doi: 10.1021/jacs.9b03764. Epub 2019 Jul 18.
3
Fishing for Drug Targets: A Focus on Diazirine Photoaffinity Probe Synthesis.
J Med Chem. 2018 Aug 23;61(16):6945-6963. doi: 10.1021/acs.jmedchem.7b01561. Epub 2018 May 9.
4
Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.
J Am Chem Soc. 2018 Mar 28;140(12):4259-4268. doi: 10.1021/jacs.7b11639. Epub 2018 Mar 15.
5
Mapping the Small Molecule Interactome by Mass Spectrometry.
Biochemistry. 2018 Jan 16;57(2):186-193. doi: 10.1021/acs.biochem.7b01038. Epub 2017 Nov 10.
6
Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O-Glycopeptides from Whole Cell Proteomes.
J Proteome Res. 2017 Apr 7;16(4):1706-1718. doi: 10.1021/acs.jproteome.6b01053. Epub 2017 Feb 28.
7
Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells.
J Am Chem Soc. 2017 Mar 15;139(10):3651-3662. doi: 10.1021/jacs.6b10418. Epub 2017 Mar 3.
8
Ligand and Target Discovery by Fragment-Based Screening in Human Cells.
Cell. 2017 Jan 26;168(3):527-541.e29. doi: 10.1016/j.cell.2016.12.029. Epub 2017 Jan 19.
9
Mapping the Binding Site of BMS-708163 on γ-Secretase with Cleavable Photoprobes.
Cell Chem Biol. 2017 Jan 19;24(1):3-8. doi: 10.1016/j.chembiol.2016.12.006. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验