Suppr超能文献

双歧杆菌属中依赖分选酶的菌毛组:具有调节微生物 - 宿主对话潜力的细胞外结构

The Sortase-Dependent Fimbriome of the Genus Bifidobacterium: Extracellular Structures with Potential To Modulate Microbe-Host Dialogue.

作者信息

Milani Christian, Mangifesta Marta, Mancabelli Leonardo, Lugli Gabriele Andrea, Mancino Walter, Viappiani Alice, Faccini Andrea, van Sinderen Douwe, Ventura Marco, Turroni Francesca

机构信息

Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

GenProbio srl, Parma, Italy.

出版信息

Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01295-17. Print 2017 Oct 1.

Abstract

Bifidobacteria are important gut commensals of mammals, including humans, of any age. However, the molecular mechanisms by which these microorganisms establish themselves in the mammalian gut and persist in this environment are largely unknown. Here, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the genus and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events and for which we were able to perform evolutionary mapping. Functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are pivotal in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. Adhesion of bifidobacterial cells to the mucosa of the large intestine is considered a hallmark for the persistence and colonization of these bacteria in the human gut. In this context, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the genus, and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events. In addition, functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are crucial in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. This study represents a complete genomic study regarding the presence of fimbriae in the genus .

摘要

双歧杆菌是包括人类在内的所有年龄段哺乳动物肠道中的重要共生菌。然而,这些微生物在哺乳动物肠道中定殖并在该环境中持续存在的分子机制在很大程度上尚不清楚。在这里,我们分析了该属已知和已测序成员中预测的分选酶依赖性菌毛库的遗传多样性,并构建了一个双歧杆菌分选酶依赖性菌毛组数据库。我们的分析揭示了双歧杆菌(亚)种之间分选酶依赖性菌毛组存在相当大的遗传变异性,这似乎是由于水平基因转移事件导致的,并且我们能够对其进行进化图谱分析。通过转录组分析和涉及不同底物的结合试验进行的功能评估表明,双歧杆菌菌毛在促进对聚糖和细胞外基质蛋白的各种粘附能力方面起着关键作用,从而支持双歧杆菌在哺乳动物肠道中的生态成功。双歧杆菌细胞与大肠黏膜的粘附被认为是这些细菌在人类肠道中持续存在和定殖的标志。在此背景下,我们分析了该属已知和已测序成员中预测的分选酶依赖性菌毛库的遗传多样性,并构建了一个双歧杆菌分选酶依赖性菌毛组数据库

相似文献

2
Expression of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in response to environmental gut conditions.
FEMS Microbiol Lett. 2014 Aug;357(1):23-33. doi: 10.1111/1574-6968.12509. Epub 2014 Jul 7.
3
Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions.
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11151-6. doi: 10.1073/pnas.1303897110. Epub 2013 Jun 17.
4
Genomics and ecological overview of the genus Bifidobacterium.
Int J Food Microbiol. 2011 Sep 1;149(1):37-44. doi: 10.1016/j.ijfoodmicro.2010.12.010. Epub 2010 Dec 28.
5
Omics of bifidobacteria: research and insights into their health-promoting activities.
Biochem J. 2017 Dec 6;474(24):4137-4152. doi: 10.1042/BCJ20160756.
7
Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment.
Appl Environ Microbiol. 2015 Nov 20;82(4):980-991. doi: 10.1128/AEM.03500-15. Print 2016 Feb 15.
8
Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium.
Microb Cell Fact. 2011 Aug 30;10 Suppl 1(Suppl 1):S16. doi: 10.1186/1475-2859-10-S1-S16.
9
Glycan Utilization and Cross-Feeding Activities by Bifidobacteria.
Trends Microbiol. 2018 Apr;26(4):339-350. doi: 10.1016/j.tim.2017.10.001. Epub 2017 Oct 28.
10
Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L.
Appl Environ Microbiol. 2014 Oct;80(19):6080-90. doi: 10.1128/AEM.01993-14. Epub 2014 Jul 25.

引用本文的文献

1
The role of teichoic acids of bifidobacteria in driving the interaction with the human host.
Front Microbiol. 2025 Jul 10;16:1616397. doi: 10.3389/fmicb.2025.1616397. eCollection 2025.
2
GH136-encoding gene (perB) is involved in gut colonization and persistence by Bifidobacterium bifidum PRL2010.
Microb Biotechnol. 2024 Feb;17(2):e14406. doi: 10.1111/1751-7915.14406. Epub 2024 Jan 25.
3
mechanisms of immune modulation and tolerance.
Gut Microbes. 2023 Dec;15(2):2291164. doi: 10.1080/19490976.2023.2291164. Epub 2023 Dec 6.
4
The Integrated Probiotic Database: a genomic compendium of bifidobacterial health-promoting strains.
Microbiome Res Rep. 2022 Feb 28;1(2):9. doi: 10.20517/mrr.2021.13. eCollection 2022.
5
Bifidobacteria: insights into the biology of a key microbial group of early life gut microbiota.
Microbiome Res Rep. 2021 Nov 19;1(1):2. doi: 10.20517/mrr.2021.02. eCollection 2021.
7
Identification of a prototype human gut subsp. strain based on comparative and functional genomic approaches.
Front Microbiol. 2023 Feb 8;14:1130592. doi: 10.3389/fmicb.2023.1130592. eCollection 2023.
8
Genome sequence data and properties of strain ICIS-504 isolated from multispecies bifidobacterial community.
Data Brief. 2022 Oct 14;45:108672. doi: 10.1016/j.dib.2022.108672. eCollection 2022 Dec.
9
Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment.
Gut Microbes. 2022 Jan-Dec;14(1):2134689. doi: 10.1080/19490976.2022.2134689.

本文引用的文献

1
Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.
Appl Environ Microbiol. 2017 Jan 17;83(3). doi: 10.1128/AEM.02894-16. Print 2017 Feb 1.
2
Gut Bifidobacteria Populations in Human Health and Aging.
Front Microbiol. 2016 Aug 19;7:1204. doi: 10.3389/fmicb.2016.01204. eCollection 2016.
3
Microbial Changes during Pregnancy, Birth, and Infancy.
Front Microbiol. 2016 Jul 14;7:1031. doi: 10.3389/fmicb.2016.01031. eCollection 2016.
4
Bifidobacteria and Their Role as Members of the Human Gut Microbiota.
Front Microbiol. 2016 Jun 15;7:925. doi: 10.3389/fmicb.2016.00925. eCollection 2016.
5
Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.
PLoS One. 2016 Jun 30;11(6):e0158498. doi: 10.1371/journal.pone.0158498. eCollection 2016.
8
Transition from infant- to adult-like gut microbiota.
Environ Microbiol. 2016 Jul;18(7):2226-36. doi: 10.1111/1462-2920.13248. Epub 2016 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验