The Sortase-Dependent Fimbriome of the Genus Bifidobacterium: Extracellular Structures with Potential To Modulate Microbe-Host Dialogue.
作者信息
Milani Christian, Mangifesta Marta, Mancabelli Leonardo, Lugli Gabriele Andrea, Mancino Walter, Viappiani Alice, Faccini Andrea, van Sinderen Douwe, Ventura Marco, Turroni Francesca
机构信息
Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
GenProbio srl, Parma, Italy.
出版信息
Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01295-17. Print 2017 Oct 1.
Bifidobacteria are important gut commensals of mammals, including humans, of any age. However, the molecular mechanisms by which these microorganisms establish themselves in the mammalian gut and persist in this environment are largely unknown. Here, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the genus and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events and for which we were able to perform evolutionary mapping. Functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are pivotal in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. Adhesion of bifidobacterial cells to the mucosa of the large intestine is considered a hallmark for the persistence and colonization of these bacteria in the human gut. In this context, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the genus, and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events. In addition, functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are crucial in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. This study represents a complete genomic study regarding the presence of fimbriae in the genus .
相似文献
Proc Natl Acad Sci U S A. 2013-6-17
Int J Food Microbiol. 2010-12-28
Appl Environ Microbiol. 2015-11-20
Trends Microbiol. 2017-10-28
Appl Environ Microbiol. 2014-10
引用本文的文献
Front Microbiol. 2025-7-10
Gut Microbes. 2023-12
Microbiome Res Rep. 2022-2-28
Microbiome Res Rep. 2021-11-19
本文引用的文献
Appl Environ Microbiol. 2017-1-17
Front Microbiol. 2016-8-19
Front Microbiol. 2016-7-14
Front Microbiol. 2016-6-15
Environ Microbiol. 2016-3-21