Suppr超能文献

林下地被树木可以在足够密集的机载激光扫描点云中被精确分割。

Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

机构信息

Department of Computer Science, University of Kentucky, Lexington, KY, 40506, USA.

Department of Forestry, University of Kentucky, Lexington, KY, 40506, USA.

出版信息

Sci Rep. 2017 Jul 28;7(1):6770. doi: 10.1038/s41598-017-07200-0.

Abstract

Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

摘要

机载激光扫描 (LiDAR) 点云可用于处理大面积森林地区的点云,以分割个体树木,并随后提取树木级别的信息。现有的分割程序通常可以检测到超过 90%的林冠树木,但由于较高冠层的遮挡效应,它们几乎无法检测到 60%的林下树木。虽然林下树木的经济价值有限,但它们是生态系统功能的重要组成部分,为众多野生动物物种提供了栖息地,并影响了林分的发展。在这里,我们根据点密度来模拟遮挡效应。我们估计了表示不同冠层(一个林冠和多个林下)的点的分数,并且还确定了合理的树木分割所需的密度(精度达到稳定水平)。我们表明,在密度约为 170 个点/平方米的情况下,林下树木很可能可以像林冠树木一样准确地分割。考虑到 LiDAR 传感器技术的进步,点云将以可承受的价格达到所需的密度。利用现代大数据计算方法,更密集的点云可以高效地处理,最终可以实现对森林资源的准确远程量化。该方法还可以应用于其他类似的遥感或高级成像应用,如地质地下建模或生物医学组织分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b217/5533762/74d484115c13/41598_2017_7200_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验