Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
Department of Materials, University of Oxford, Oxford OX1 3PH, UK.
Nat Chem. 2017 Aug;9(8):810-816. doi: 10.1038/nchem.2740. Epub 2017 Mar 6.
The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.
将富含氧气的生物质转化为碳氢化合物燃料需要在升级过程中使用高效的加氢脱氧催化剂。然而,传统制备的 CoMoS 催化剂虽然对加氢脱硫有效,但由于其活性差、硫损失和在高温下迅速失活,因此并不适用。在这里,我们报告了一种 MoS 单层片的合成方法,该单层片由孤立的 Co 原子修饰,并与基面的硫空位共价键合,与传统制备的样品相比,该单层片在 4-甲基苯酚加氢脱氧生成甲苯的反应中表现出更高的活性、选择性和稳定性。这种更高的活性使得反应温度可以从通常使用的 300°C 降低到 180°C,从而使得催化反应能够在没有硫损失和失活的情况下进行。实验分析和密度泛函理论计算揭示了在 MoS 基面表面的 Co 和 Mo 原子之间的界面处存在大量的位,我们将更高的活性归因于在观察到的 Co-S-Mo 界面位附近形成的硫空位。