CAS Key Laboratory of Design and Assembly of Functional Nanostructures, CAS Key Laboratory of Optoelectronic Materials Chemistry and Physics, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China.
University of the Chinese Academy of Sciences , Beijing 100049, China.
J Am Chem Soc. 2017 Aug 23;139(33):11443-11450. doi: 10.1021/jacs.7b04000. Epub 2017 Aug 11.
All-inorganic cesium lead halide perovskite (CsPbX, X = Cl, Br, and I) quantum dots (QDs), possessing high photoluminescence quantum yields and tunable color output, have recently been endowed great promise for high-performance solar cells and light-emitting diodes (LEDs). Although moisture stability has been greatly improved through separating QDs with a SiO shell, the practical applications of CsPbX QDs are severely restricted by their poor thermal stability, which is associated with the intrinsically low formation energies of perovskite lattices. In this regard, enhancing the formation energies of perovskite lattices of CsPbX QDs holds great promise in getting to the root of their poor thermal stability, which hitherto remains untouched. Herein, we demonstrate an effective strategy through Mn substitution to fundamentally stabilize perovskite lattices of CsPbX QDs even at high temperatures up to 200 °C under ambient air conditions. We employ first-principle calculations to confirm that the significantly improved thermal stability and optical performance of CsPbX:Mn QDs arise primarily from the enhanced formation energy due to the successful doping of Mn in CsPbX QDs. Benefiting from such an effective substitution strategy, these Mn-doped CsPbX QDs can function well as efficient light emitters toward the fabrication of high-performance perovskite LEDs.
全无机铯铅卤钙钛矿(CsPbX,X = Cl、Br 和 I)量子点(QDs)具有高光致发光量子产率和可调的颜色输出,最近在高性能太阳能电池和发光二极管(LED)方面显示出巨大的应用前景。尽管通过 SiO 壳将 QDs 分离可以大大提高其水分稳定性,但 CsPbX QDs 的实际应用仍受到其较差的热稳定性的严重限制,这与钙钛矿晶格的固有低形成能有关。在这方面,提高 CsPbX QDs 钙钛矿晶格的形成能有望从根本上解决其较差的热稳定性问题,而这一问题迄今尚未得到解决。在此,我们通过 Mn 取代展示了一种有效的策略,即使在环境空气条件下高达 200°C 的高温下,也能从根本上稳定 CsPbX QDs 的钙钛矿晶格。我们采用第一性原理计算来证实 CsPbX:Mn QDs 的热稳定性和光学性能的显著提高主要源于由于 Mn 在 CsPbX QDs 中的成功掺杂而导致的形成能的提高。得益于这种有效的替代策略,这些 Mn 掺杂的 CsPbX QDs 可以作为高效的发光体,用于制备高性能的钙钛矿 LED。