Lee Jeong-Yeon, Lee Seojun, Ryu Jun, Kang Dong-Won
Department of Smart Cities, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
Department of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
Nanomaterials (Basel). 2024 Sep 26;14(19):1554. doi: 10.3390/nano14191554.
The integration of perovskite materials in solar cells has garnered significant attention due to their exceptional photovoltaic properties. However, achieving a bandgap energy below 1.2 eV remains challenging, particularly for applications requiring infrared absorption, such as sub-cells in tandem solar cells and single-junction perovskite solar cells. In this study, we employed a doping strategy to engineer the bandgap and observed that the doping effects varied depending on the A-site cation. Specifically, we investigated the impact of bismuth (Bi) incorporation into perovskites with different A-site cations, such as cesium (Cs) and methylammonium (MA). Remarkably, Bi doping in MA-based tin-lead perovskites enabled the fabrication of ultra-narrow bandgap films (~1 eV). Comprehensive characterization, including structural, optical, and electronic analyses, was conducted to elucidate the effects of Bi doping. Notably, 8% Bi-doped Sn-Pb perovskites demonstrated infrared absorption extending up to 1360 nm, an unprecedented range for ABX-type single halide perovskites. This work provides valuable insights into further narrowing the bandgap of halide perovskite materials, which is essential for their effective use in multi-junction tandem solar cell architectures.
钙钛矿材料在太阳能电池中的集成因其优异的光伏性能而备受关注。然而,实现低于1.2 eV的带隙能量仍然具有挑战性,特别是对于需要红外吸收的应用,如串联太阳能电池中的子电池和单结钙钛矿太阳能电池。在本研究中,我们采用掺杂策略来设计带隙,并观察到掺杂效应因A位阳离子而异。具体而言,我们研究了铋(Bi)掺入具有不同A位阳离子(如铯(Cs)和甲铵(MA))的钙钛矿中的影响。值得注意的是,在基于MA的锡铅钙钛矿中进行Bi掺杂能够制备出超窄带隙薄膜(~1 eV)。我们进行了包括结构、光学和电子分析在内的综合表征,以阐明Bi掺杂的影响。值得注意的是,8% Bi掺杂的Sn-Pb钙钛矿表现出高达1360 nm的红外吸收,这对于ABX型单卤化物钙钛矿来说是前所未有的范围。这项工作为进一步缩小卤化物钙钛矿材料的带隙提供了有价值的见解,这对于它们在多结串联太阳能电池结构中的有效应用至关重要。