Suppr超能文献

用于生物体液中 L-脯氨酸电化学生物传感的脯氨酸脱氢酶包埋介孔磁性硅纳米材料。

Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids.

机构信息

Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.

Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

Enzyme Microb Technol. 2017 Oct;105:64-76. doi: 10.1016/j.enzmictec.2017.05.007. Epub 2017 Jun 4.

Abstract

In this work, physical adsorption was used for immobilization of proline dehydrogenase onto a magnetic mesoporous silica nanomaterial. The immobilization and electrocatalytical activity of proline dehydrogenase entrapped in a magnetic mesoporous silica nanomaterial was studied using cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry. The magnetic mesoporous silica networks having a high surface area (362mg) exhibited excellent properties for entrapment of proline dehydrogenase. The applied approach led to better resistance to temperature and pH inactivation in comparison to the free enzyme. The electrocatalytic current response of proline dehydrogenase entrapped in a magnetic mesoporous silica nanomaterial toward oxidation of L-proline was maintained in the analytical solution temperature up to 70°C. The entrapped proline dehydrogenase was casted onto a polycysteine-modified glassy carbon electrode. The electrode was evaluated as an electrochemical biosensor for electrooxidation and determination of L-proline in phosphate buffer solution. A cyclic voltammetry study indicated that the oxidation process of proline is irreversible and is diffusion controlled. The electrochemical behavior was further exploited as a sensitive detection scheme for L-proline determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit were 0.01-0.15μM and 0.006μM, respectively. The method was applied to the assay of L-proline in whole blood and normal and malignant cell line lysates (normal cell (L929); gastric cancer cell-CAT 3, colon cancer cell-HCT, colon cancer cell-SW, and breast cancer cell-MCF7).

摘要

在这项工作中,使用物理吸附将脯氨酸脱氢酶固定在磁性介孔硅纳米材料上。使用循环伏安法、差分脉冲伏安法和方波伏安法研究了固定在磁性介孔硅纳米材料中的脯氨酸脱氢酶的固定化和电催化活性。具有高表面积(362mg)的磁性介孔硅网络表现出良好的固定脯氨酸脱氢酶的性能。与游离酶相比,所应用的方法导致对温度和 pH 失活的抵抗力更好。固定在磁性介孔硅纳米材料中的脯氨酸脱氢酶对 L-脯氨酸氧化的电化学催化电流响应在分析溶液温度高达 70°C 时得以维持。将固定化的脯氨酸脱氢酶浇铸在多半胱氨酸修饰的玻碳电极上。该电极被评估为用于在磷酸盐缓冲溶液中电氧化和测定 L-脯氨酸的电化学生物传感器。循环伏安法研究表明,脯氨酸的氧化过程是不可逆的,并且受扩散控制。电化学行为进一步被开发为通过差分脉冲伏安法测定 L-脯氨酸的灵敏检测方案。在优化条件下,浓度范围和检测限分别为 0.01-0.15μM 和 0.006μM。该方法用于全血和正常和恶性细胞系裂解物(正常细胞(L929);胃癌细胞-CAT3、结肠癌细胞-HCT、结肠癌细胞-SW 和乳腺癌细胞-MCF7)中 L-脯氨酸的测定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验