Kolinjivadi Arun Mouli, Sannino Vincenzo, De Antoni Anna, Zadorozhny Karina, Kilkenny Mairi, Técher Hervé, Baldi Giorgio, Shen Rong, Ciccia Alberto, Pellegrini Luca, Krejci Lumir, Costanzo Vincenzo
DNA Metabolism Laboratory, IFOM, FIRC Institute for Molecular Oncology, 20139 Milan, Italy.
Department of Biology, Masaryk University, Brno 625 00, Czech Republic.
Mol Cell. 2017 Sep 7;67(5):867-881.e7. doi: 10.1016/j.molcel.2017.07.001. Epub 2017 Jul 27.
Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51 mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.
Brca2缺陷会导致停滞叉处新生DNA的Mre11依赖性降解,从而导致细胞死亡。为了了解这一过程背后的分子机制,我们分离出了非洲爪蟾的Brca2。我们证明,Brca2蛋白通过促进Rad51与复制DNA的结合,防止单链DNA间隙在复制叉连接处及其后方积累。没有Brca2时,带有持续间隙的叉会被Smarcal1转化为反向叉,从而引发广泛的Mre11依赖性新生DNA降解。稳定的Rad51核丝,而不是RPA或Rad51突变蛋白,直接防止Mre11依赖性DNA降解。相反,在没有Brca2的情况下,抑制Mre11会促进反向叉的积累。Rad51直接与Pol α N端结构域相互作用,促进Pol α和δ与停滞的复制叉结合。这种相互作用可能促进复制叉重新启动并避免间隙形成。这些结果表明,Brca2和Rad51可防止异常DNA复制中间体的形成,而Smarcal1和Mre11对这些中间体的处理易导致基因组不稳定。