University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, Germany.
University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
J Biotechnol. 2017 Nov 10;261:149-156. doi: 10.1016/j.jbiotec.2017.07.028. Epub 2017 Jul 27.
Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME.
生命科学实验通常涉及来自各种领域的工具,例如质谱分析、下一代测序或图像处理。在这些工具之间传递数据通常涉及用于控制数据流、数据转换和统计分析的复杂脚本。此类脚本不仅容易受到平台的限制,而且随着实验的进行往往会不断增加,并且很少有很好的文档记录,这一事实阻碍了实验的可重复性。工作流程系统(如 KNIME Analytics Platform)旨在通过提供图形化连接工具的平台来解决这些问题,并确保在不同操作系统上获得相同的结果。作为开源软件,KNIME 允许科学家和程序员向科学界提供自己的扩展。在本文综述中,我们展示了来自生命科学领域的选定扩展,这些扩展简化了数据探索、分析和可视化,并且由于 KNIME 的统一数据模型而具有互操作性。此外,我们还提到了其他在生命科学中常用的工作流程系统,并强调了它们与 KNIME 的相似之处和不同之处。