School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
Antiviral Res. 2017 Oct;146:65-75. doi: 10.1016/j.antiviral.2017.07.014. Epub 2017 Jul 27.
Viruses of the Caliciviridae cause significant and sometimes lethal diseases, however despite substantial research efforts, specific antivirals are lacking. Broad-spectrum antivirals could combat multiple viral pathogens, offering a rapid solution when no therapies exist. The RNA-dependent RNA polymerase (RdRp) is an attractive antiviral target as it is essential for viral replication and lacks mammalian homologs. To focus the search for pan-Caliciviridae antivirals, the RdRp was probed with non-nucleoside inhibitors (NNIs) developed against hepatitis C virus (HCV) to reveal both allosteric ligands for structure-activity relationship enhancement, and highly-conserved RdRp pockets for antiviral targeting. The ability of HCV NNIs to inhibit calicivirus RdRp activities was assessed using in vitro enzyme and murine norovirus cell culture assays. Results revealed that three NNIs which bound the HCV RdRp Thumb I (TI) site also inhibited transcriptional activities of six RdRps spanning the Norovirus, Sapovirus and Lagovirus genera of the Caliciviridae. These NNIs included JTK-109 (RdRp inhibition range: IC 4.3-16.6 μM), TMC-647055 (IC range: 18.8-45.4 μM) and Beclabuvir (IC range: 23.8->100 μM). In silico studies and site-directed mutagenesis indicated the JTK-109 binding site was within the calicivirus RdRp thumb domain, in a pocket termed Site-B, which is highly-conserved within all calicivirus RdRps. Additionally, RdRp inhibition assays revealed that JTK-109 was antagonistic with the previously reported RdRp inhibitor pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) tetrasodium salt (PPNDS), that also binds to Site-B. Moreover, like JTK-109, PPNDS was also a potent inhibitor of polymerases from six viruses spanning the three Caliciviridae genera tested (IC range: 0.1-2.3 μM). Together, this study demonstrates the potential for de novo development of broad-spectrum antivirals that target the highly-conserved RdRp thumb pocket, Site-B. We also revealed three broad-spectrum HCV NNIs that could be used as antiviral scaffolds for further development against caliciviruses and other viruses.
杯状病毒科的病毒会导致严重甚至致命的疾病,尽管已经进行了大量的研究,但仍缺乏特定的抗病毒药物。广谱抗病毒药物可以对抗多种病毒病原体,在没有治疗方法的情况下提供快速解决方案。RNA 依赖性 RNA 聚合酶 (RdRp) 是一个有吸引力的抗病毒靶点,因为它是病毒复制所必需的,并且缺乏哺乳动物同源物。为了集中寻找泛杯状病毒科抗病毒药物,我们用针对丙型肝炎病毒 (HCV) 开发的非核苷抑制剂 (NNI) 探测 RdRp,以揭示结构活性关系增强的别构配体,以及抗病毒靶向的高度保守 RdRp 口袋。使用体外酶和鼠诺如病毒细胞培养测定法评估 HCV NNI 抑制杯状病毒 RdRp 活性的能力。结果表明,结合 HCV RdRp 拇指 I (TI) 位点的三种 NNI 也抑制了跨越诺如病毒、沙波病毒和杯状病毒科 Lagovirus 属的六种 RdRp 的转录活性。这些 NNI 包括 JTK-109(RdRp 抑制范围:IC 4.3-16.6 μM)、TMC-647055(IC 范围:18.8-45.4 μM)和 Beclabuvir(IC 范围:23.8->100 μM)。计算机研究和定点突变表明,JTK-109 的结合位点位于杯状病毒 RdRp 拇指结构域内,位于一个称为 Site-B 的口袋中,该口袋在所有杯状病毒 RdRps 中高度保守。此外,RdRp 抑制测定表明,JTK-109 与先前报道的 RdRp 抑制剂吡哆醛-5'-磷酸-6-(2'-萘基偶氮-6'-硝基-4',8'-二磺酸盐)四钠盐 (PPNDS) 呈拮抗作用,该抑制剂也结合到 Site-B。此外,与 JTK-109 一样,PPNDS 也是测试的三个杯状病毒科属六种病毒的聚合酶的有效抑制剂(IC 范围:0.1-2.3 μM)。总之,这项研究证明了针对高度保守的 RdRp 拇指口袋 Site-B 开发新型广谱抗病毒药物的潜力。我们还发现了三种广谱 HCV NNI,它们可以用作进一步针对杯状病毒和其他病毒开发的抗病毒支架。