Suppr超能文献

借助机器学习算法和基于分子动力学模拟的模型预测新型抗诺如病毒抑制剂

Predicting New Anti-Norovirus Inhibitor With the Help of Machine Learning Algorithms and Molecular Dynamics Simulation-Based Model.

作者信息

Ebenezer Oluwakemi, Damoyi Nkululeko, Shapi Michael

机构信息

Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Durban, South Africa.

出版信息

Front Chem. 2021 Nov 17;9:753427. doi: 10.3389/fchem.2021.753427. eCollection 2021.

Abstract

Hepatitis C virus (HCV) inhibitors are essential in the treatment of human norovirus (HuNoV). This study aimed to map out HCV NS5B RNA-dependent RNA polymerase inhibitors that could potentially be responsible for the inhibitory activity of HuNoV RdRp. It is necessary to develop robust machine learning and methods to predict HuNoV RdRp compounds. In this study, Naïve Bayesian and random forest models were built to categorize norovirus RdRp inhibitors from the non-inhibitors using their molecular descriptors and PubChem fingerprints. The best model observed had accuracy, specificity, and sensitivity values of 98.40%, 97.62%, and 97.62%, respectively. Meanwhile, an external test set was used to validate model performance before applicability to the screened HCV compounds database. As a result, 775 compounds were predicted as NoV RdRp inhibitors. The pharmacokinetics calculations were used to filter out the inhibitors that lack drug-likeness properties. Molecular docking and molecular dynamics simulation investigated the inhibitors' binding modes and residues critical for the HuNoV RdRp receptor. The most active compound, CHEMBL167790, closely binds to the binding pocket of the RdRp enzyme and depicted stable binding with RMSD 0.8-3.2 Å, and the RMSF profile peak was between 1.0-4.0 Å, and the conformational fluctuations were at 450-460 residues. Moreover, the dynamic residue cross-correlation plot also showed the pairwise correlation between the binding residues 300-510 of the HuNoV RdRp receptor and CHEMBL167790. The principal component analysis depicted the enhanced movement of protein atoms. Moreover, additional residues such as Glu510 and Asn505 interacted with CHEMBL167790 via water bridge and established H-bond interactions after the simulation. http://zinc15.docking.org/substances/ZINC000013589565.

摘要

丙型肝炎病毒(HCV)抑制剂在人类诺如病毒(HuNoV)的治疗中至关重要。本研究旨在找出可能对HuNoV RdRp的抑制活性负责的HCV NS5B RNA依赖性RNA聚合酶抑制剂。开发强大的机器学习方法来预测HuNoV RdRp化合物是必要的。在本研究中,构建了朴素贝叶斯和随机森林模型,利用诺如病毒RdRp抑制剂和非抑制剂的分子描述符及PubChem指纹对它们进行分类。观察到的最佳模型的准确率、特异性和灵敏度值分别为98.40%、97.62%和97.62%。同时,在将模型应用于筛选的HCV化合物数据库之前,使用外部测试集来验证模型性能。结果,775种化合物被预测为诺如病毒RdRp抑制剂。通过药代动力学计算筛选出缺乏类药物性质的抑制剂。分子对接和分子动力学模拟研究了抑制剂与HuNoV RdRp受体的结合模式以及关键残基。活性最高的化合物CHEMBL167790与RdRp酶的结合口袋紧密结合,其RMSD为0.8 - 3.2 Å时表现出稳定结合,RMSF谱峰在1.0 - 4.0 Å之间,构象波动位于450 - 460个残基处。此外,动态残基互相关图还显示了HuNoV RdRp受体300 - 510位结合残基与CHEMBL167790之间的成对相关性。主成分分析显示蛋白质原子的运动增强。此外,模拟后,诸如Glu510和Asn505等其他残基通过水桥与CHEMBL167790相互作用并建立了氢键相互作用。http://zinc15.docking.org/substances/ZINC000013589565

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d03/8636098/8bc470a17acd/fchem-09-753427-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验