Suppr超能文献

模拟反事实结果以估计因果效应。

MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.

作者信息

Lok Judith J

机构信息

Department of Biostatistics, Harvard School of Public Health.

出版信息

Ann Stat. 2017 Apr;45(2):461-499. doi: 10.1214/15-AOS1433. Epub 2017 May 16.

Abstract

In observational studies, treatment may be adapted to covariates at several times without a fixed protocol, in continuous time. Treatment influences covariates, which influence treatment, which influences covariates, and so on. Then even time-dependent Cox-models cannot be used to estimate the net treatment effect. Structural nested models have been applied in this setting. Structural nested models are based on counterfactuals: the outcome a person would have had had treatment been withheld after a certain time. Previous work on continuous-time structural nested models assumes that counterfactuals depend deterministically on observed data, while conjecturing that this assumption can be relaxed. This article proves that one can mimic counterfactuals by constructing random variables, solutions to a differential equation, that have the same distribution as the counterfactuals, even given past observed data. These "mimicking" variables can be used to estimate the parameters of structural nested models without assuming the treatment effect to be deterministic.

摘要

在观察性研究中,治疗可能会在连续时间内多次根据协变量进行调整,而没有固定的方案。治疗会影响协变量,协变量又会影响治疗,治疗又会影响协变量,如此循环往复。那么,即使是时间相依的Cox模型也无法用于估计净治疗效果。结构嵌套模型已应用于这种情况。结构嵌套模型基于反事实:一个人在某一时刻之后若不接受治疗会出现的结果。先前关于连续时间结构嵌套模型的研究假设反事实完全取决于观测数据,同时推测这个假设可以放宽。本文证明,即使给定过去的观测数据,也可以通过构建与反事实具有相同分布的随机变量(一个微分方程的解)来模拟反事实。这些“模拟”变量可用于估计结构嵌套模型的参数,而无需假设治疗效果是确定性的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2686/5531214/624de49a3d78/nihms-783767-f0001.jpg

相似文献

1
MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.模拟反事实结果以估计因果效应。
Ann Stat. 2017 Apr;45(2):461-499. doi: 10.1214/15-AOS1433. Epub 2017 May 16.
3
The stochastic system approach for estimating dynamic treatments effect.用于估计动态治疗效果的随机系统方法。
Lifetime Data Anal. 2015 Oct;21(4):561-78. doi: 10.1007/s10985-015-9322-3. Epub 2015 Feb 11.
10
[Causal analysis approaches in epidemiology].[流行病学中的因果分析方法]
Rev Epidemiol Sante Publique. 2014 Feb;62(1):53-63. doi: 10.1016/j.respe.2013.09.002. Epub 2014 Jan 1.

本文引用的文献

5
Event history analysis and inference from observational epidemiology.事件史分析与观察性流行病学推断
Stat Med. 1999;18(17-18):2353-63. doi: 10.1002/(sici)1097-0258(19990915/30)18:17/18<2353::aid-sim261>3.0.co;2-#.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验