Suppr超能文献

连续时间过程中结构失效时间模型的半参数估计。

Semiparametric estimation of structural failure time models in continuous-time processes.

作者信息

Yang S, Pieper K, Cools F

机构信息

Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, North Carolina 27695, U.S.A.

Duke Clinical Research Institute, Duke University, 300 W. Morgan Street, Durham, North Carolina 27705, U.S.A.

出版信息

Biometrika. 2020 Mar;107(1):123-136. doi: 10.1093/biomet/asz057. Epub 2019 Oct 29.

Abstract

Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed for estimating the model parameters in the presence of time-dependent confounding and administrative censoring. However, most existing methods require manually pre-processing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the nonsmoothness of artificial censoring. We propose a class of continuous-time structural failure time models that respects the continuous-time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from a potentially infinite number of estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, which are consistent if the model for the treatment process or the failure time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that resampling methods can be used for inference.

摘要

结构失效时间模型是用于估计时变治疗对生存结局影响的因果模型。为了在存在时间依存性混杂和行政删失的情况下估计模型参数,人们提出了G估计和人为删失方法。然而,大多数现有方法需要将数据手动预处理为等距数据,这可能会使后续的因果分析无效。此外,由于人为删失的不光滑性,计算和推断具有挑战性。我们提出了一类连续时间结构失效时间模型,该模型尊重基础数据过程的连续时间性质。在无未测量混杂的鞅条件下,我们表明模型参数可从潜在无限数量的估计方程中识别出来。利用半参数效率理论,我们推导了首个半参数双重稳健估计量,若治疗过程模型或失效时间模型(但不一定两者都正确指定)正确设定,则该估计量是一致的。此外,我们建议使用删失加权的逆概率来处理依存删失。与人为删失不同,我们的加权策略在估计中不会引入不光滑性,并确保可以使用重采样方法进行推断。

相似文献

1
Semiparametric estimation of structural failure time models in continuous-time processes.
Biometrika. 2020 Mar;107(1):123-136. doi: 10.1093/biomet/asz057. Epub 2019 Oct 29.
2
Semiparametric estimation of structural nested mean models with irregularly spaced longitudinal observations.
Biometrics. 2022 Sep;78(3):937-949. doi: 10.1111/biom.13471. Epub 2021 Apr 29.
3
Augmented and doubly robust G-estimation of causal effects under a Structural nested failure time model.
Biometrics. 2018 Jun;74(2):472-480. doi: 10.1111/biom.12749. Epub 2017 Jul 25.
4
5
6
Locally Efficient Semiparametric Estimators for Proportional Hazards Models with Measurement Error.
Scand Stat Theory Appl. 2016 Jun;43(2):558-572. doi: 10.1111/sjos.12191. Epub 2015 Nov 6.
7
Structural accelerated failure time models for survival analysis in studies with time-varying treatments.
Pharmacoepidemiol Drug Saf. 2005 Jul;14(7):477-91. doi: 10.1002/pds.1064.
8
Doubly robust nonparametric instrumental variable estimators for survival outcomes.
Biostatistics. 2023 Apr 14;24(2):518-537. doi: 10.1093/biostatistics/kxab036.
9
Causal mediation analysis on failure time outcome without sequential ignorability.
Lifetime Data Anal. 2017 Oct;23(4):533-559. doi: 10.1007/s10985-016-9377-9. Epub 2016 Jul 27.
10
Partly conditional estimation of the effect of a time-dependent factor in the presence of dependent censoring.
Biometrics. 2013 Jun;69(2):338-47. doi: 10.1111/biom.12023. Epub 2013 May 2.

引用本文的文献

1
Variable selection for doubly robust causal inference.
Stat Interface. 2025;18(1):93-105. doi: 10.4310/sii.241023040813. Epub 2024 Oct 22.
3
Integrative analysis of high-dimensional RCT and RWD subject to censoring and hidden confounding.
Lifetime Data Anal. 2025 Jul;31(3):473-497. doi: 10.1007/s10985-025-09654-1. Epub 2025 Apr 29.
4
Functional principal component analysis with informative observation times.
Biometrika. 2024 Oct 17;112(1):asae055. doi: 10.1093/biomet/asae055. eCollection 2025.
5
Estimating spatially varying health effects of wildland fire smoke using mobile health data.
J R Stat Soc Ser C Appl Stat. 2024 Jul 16;73(5):1242-1261. doi: 10.1093/jrsssc/qlae034. eCollection 2024 Nov.
7
Robust inference of conditional average treatment effects using dimension reduction.
Stat Sin. 2022;32(Suppl):547-567. doi: 10.5705/ss.202020.0409.
8
A treatment-specific marginal structural Cox model for the effect of treatment discontinuation.
Pharm Stat. 2022 Sep;21(5):988-1004. doi: 10.1002/pst.2211. Epub 2022 Mar 31.
9
Semiparametric estimation of structural nested mean models with irregularly spaced longitudinal observations.
Biometrics. 2022 Sep;78(3):937-949. doi: 10.1111/biom.13471. Epub 2021 Apr 29.

本文引用的文献

1
SENSITIVITY ANALYSIS FOR UNMEASURED CONFOUNDING IN COARSE STRUCTURAL NESTED MEAN MODELS.
Stat Sin. 2018 Oct;28(4):1703-1723. doi: 10.5705/ss.202016.0133.
2
Multiple robustness in factorized likelihood models.
Biometrika. 2017 Sep;104(3):561-581. doi: 10.1093/biomet/asx027. Epub 2017 Jun 15.
4
MIMICKING COUNTERFACTUAL OUTCOMES TO ESTIMATE CAUSAL EFFECTS.
Ann Stat. 2017 Apr;45(2):461-499. doi: 10.1214/15-AOS1433. Epub 2017 May 16.
5
A goodness-of-fit test for structural nested mean models.
Biometrika. 2016 Sep;103(3):734-741. doi: 10.1093/biomet/asw031. Epub 2016 Jul 25.
7
Methods for dealing with time-dependent confounding.
Stat Med. 2013 Apr 30;32(9):1584-618. doi: 10.1002/sim.5686. Epub 2012 Dec 3.
8
Impact of time to start treatment following infection with application to initiating HAART in HIV-positive patients.
Biometrics. 2012 Sep;68(3):745-54. doi: 10.1111/j.1541-0420.2011.01738.x. Epub 2012 Feb 21.
9
G-estimation and artificial censoring: problems, challenges, and applications.
Biometrics. 2012 Mar;68(1):275-86. doi: 10.1111/j.1541-0420.2011.01656.x. Epub 2011 Sep 23.
10
Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data.
Biometrika. 2009 Sep;96(3):723-734. doi: 10.1093/biomet/asp033. Epub 2009 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验