Yang S, Pieper K, Cools F
Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, North Carolina 27695, U.S.A.
Duke Clinical Research Institute, Duke University, 300 W. Morgan Street, Durham, North Carolina 27705, U.S.A.
Biometrika. 2020 Mar;107(1):123-136. doi: 10.1093/biomet/asz057. Epub 2019 Oct 29.
Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed for estimating the model parameters in the presence of time-dependent confounding and administrative censoring. However, most existing methods require manually pre-processing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the nonsmoothness of artificial censoring. We propose a class of continuous-time structural failure time models that respects the continuous-time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from a potentially infinite number of estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, which are consistent if the model for the treatment process or the failure time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that resampling methods can be used for inference.
结构失效时间模型是用于估计时变治疗对生存结局影响的因果模型。为了在存在时间依存性混杂和行政删失的情况下估计模型参数,人们提出了G估计和人为删失方法。然而,大多数现有方法需要将数据手动预处理为等距数据,这可能会使后续的因果分析无效。此外,由于人为删失的不光滑性,计算和推断具有挑战性。我们提出了一类连续时间结构失效时间模型,该模型尊重基础数据过程的连续时间性质。在无未测量混杂的鞅条件下,我们表明模型参数可从潜在无限数量的估计方程中识别出来。利用半参数效率理论,我们推导了首个半参数双重稳健估计量,若治疗过程模型或失效时间模型(但不一定两者都正确指定)正确设定,则该估计量是一致的。此外,我们建议使用删失加权的逆概率来处理依存删失。与人为删失不同,我们的加权策略在估计中不会引入不光滑性,并确保可以使用重采样方法进行推断。