Yang Shu
Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA.
Biometrics. 2022 Sep;78(3):937-949. doi: 10.1111/biom.13471. Epub 2021 Apr 29.
Structural nested mean models (SNMMs) are useful for causal inference of treatment effects in longitudinal observational studies. Most existing works assume that the data are collected at prefixed time points for all subjects, which, however, may be restrictive in practice. To deal with irregularly spaced observations, we assume a class of continuous-time SNMMs and a martingale condition of no unmeasured confounding (NUC) to identify the causal parameters. We develop the semiparametric efficiency theory and locally efficient estimators for continuous-time SNMMs. This task is nontrivial due to the restrictions from the NUC assumption imposed on the SNMM parameter. In the presence of ignorable censoring, we show that the complete-case estimator is optimal among a class of weighting estimators including the inverse probability of censoring weighting estimator, and it achieves a double robustness feature in that it is consistent if at least one of the models for the potential outcome mean function and the treatment process is correctly specified. The new framework allows us to conduct causal analysis respecting the underlying continuous-time nature of data processes. The simulation study shows that the proposed estimator outperforms existing approaches. We estimate the effect of time to initiate highly active antiretroviral therapy on the CD4 count at year 2 from the observational Acute Infection and Early Disease Research Program database.
结构嵌套均值模型(SNMMs)在纵向观察性研究中对治疗效果的因果推断很有用。大多数现有研究假设所有受试者的数据都是在预先设定的时间点收集的,然而,这在实际中可能具有局限性。为了处理不规则间隔的观测值,我们假设一类连续时间SNMMs和一个无未测量混杂(NUC)的鞅条件来识别因果参数。我们为连续时间SNMMs发展了半参数效率理论和局部有效估计量。由于对SNMM参数施加的NUC假设的限制,这项任务并不简单。在存在可忽略删失的情况下,我们表明在包括删失加权估计量的逆概率加权估计量在内的一类加权估计量中,完全病例估计量是最优的,并且它具有双重稳健性,即如果潜在结果均值函数和治疗过程的模型中至少有一个被正确设定,它就是一致的。新框架使我们能够在尊重数据过程潜在连续时间性质的情况下进行因果分析。模拟研究表明,所提出的估计量优于现有方法。我们从观察性急性感染和早期疾病研究项目数据库中估计开始高效抗逆转录病毒治疗的时间对第2年CD4细胞计数的影响。