Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.
ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28859-28867. doi: 10.1021/acsami.7b06850. Epub 2017 Aug 16.
Conjugated polymers are used commonly to selectively sort semiconducting carbon nanotubes (S-CNTs) from their metallic counterparts in organic solvents. The polymer-wrapped S-CNTs can be easily processed from organic solvents into arrays of CNTs for scalable device fabrication. Though the conjugated polymers are essential for sorting and device fabrication, it is highly desirable to remove them completely as they limit the electronic properties of the device. Here, we use a commercially available polymer, namely, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy), to sort large-diameter S-CNTs with ultrahigh selectivity and fabricate CNT-array-based field effect transistors (FETs) via a floating evaporative self-assembly (FESA) process. We report quantitative removal of the polymer wrapper from the FESA aligned S-CNT arrays using a metal-chelation-assisted polymer removal (McAPR) process. The implementation of this process on FESA films requires the selective thermal degradation of the polymer into oligomers, combined with optimization of the solvent type and temperature of the metal complexation reaction. Resulting S-CNT array FET devices show that the electronic properties of pristine CNT are preserved through this process. Optical microscopy, UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to characterize the quantitative polymer removal. We quantitatively describe the FET devices to analyze the fundamental characteristics of FETs (mobility (μ), on-conductance (G), and contact resistance (2R)) by comparing before and after polymer removal. The ability to completely remove the polymer wrapper in aligned CNT arrays without adversely affecting the device properties opens up applications beyond FETs into photovoltaics and biosensing.
共轭聚合物常用于从有机溶剂中选择性地分离半导体碳纳米管(S-CNTs)与其金属对应物。聚合物包裹的 S-CNTs 可以很容易地从有机溶剂中加工成 CNT 阵列,用于可扩展的器件制造。虽然共轭聚合物对于分离和器件制造是必不可少的,但完全去除它们是非常可取的,因为它们限制了器件的电子性能。在这里,我们使用一种市售的聚合物,即聚[(9,9-二辛基芴-2,7-二基)-共-(6,6'-(2,2'-联吡啶))](PFO-BPy),通过浮动蒸发自组装(FESA)工艺对大直径 S-CNTs 进行超高选择性的分离,并制造 CNT 阵列场效应晶体管(FET)。我们报告了使用金属螯合辅助聚合物去除(McAPR)工艺从 FESA 对准的 S-CNT 阵列中定量去除聚合物封装的方法。在 FESA 薄膜上实施此过程需要选择性地将聚合物热降解为低聚物,并结合优化溶剂类型和金属络合反应温度。由此产生的 S-CNT 阵列 FET 器件表明,通过该过程保留了原始 CNT 的电子性能。我们使用光学显微镜、紫外可见光谱和 X 射线光电子能谱(XPS)来表征定量聚合物去除。我们通过定量描述 FET 器件来分析 FET 的基本特性(迁移率(μ)、导通电导(G)和接触电阻(2R)),通过比较去除前后的特性。在不影响器件性能的情况下,完全去除 CNT 阵列中聚合物封装的能力为超越 FET 的应用,如光伏和生物传感,开辟了新的机会。