Department of Materials Science and Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.
Department of Chemical and Environmental Engineering, and Materials Science and Engineering Program, University of California-Riverside , Riverside, California 92521, United States.
ACS Nano. 2015 Oct 27;9(10):10203-13. doi: 10.1021/acsnano.5b03835. Epub 2015 Sep 15.
Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.
共轭聚合物是目前发现的对碳纳米管具有最高选择性的分离试剂之一,它能够从包含有问题的金属纳米管的多组分混合物中分离出超高纯度半导体单壁碳纳米管(s-SWCNTs)。虽然这种强选择性对于分离非常理想,但也导致聚合物不可逆地吸附在 s-SWCNTs 上,从而限制了它们的电子和光电性能。我们展示了聚合物主链的刚性变化如何引发其从纳米管表面释放。为此,我们选择了一种模型聚合物,即聚[(9,9-二辛基芴-2,7-二基)-共-(6,60-(2,20-联吡啶))](PFO-BPy),它对 s-SWCNTs 具有超高选择性,而 s-SWCNTs 特别适用于 FET,并且具有通过温和化学改变刚性的化学官能团(BPy)。当将 Re(CO)5Cl 添加到 PFO-BPy 包裹的 s-SWCNTs 的溶液中时,共聚物中 BPy 单元的选择性螯合导致 PFO-BPy 的解包裹。紫外-可见、XPS 和拉曼光谱研究表明,金属配体络合物与 BPy 的结合触发了高达 85%的 PFO-BPy 从电弧放电 s-SWCNTs(直径=1.3-1.7nm)和高达 72%的 CoMoCAT s-SWCNTs(直径=0.7-0.8nm)中去除,这表明电子结构通过这个过程得以保留。通过两种其他过渡金属盐的研究证明了该方法的通用性。分子动力学模拟支持了我们的实验发现,即 PFO-BPy 主链中 BPy 与 Re(CO)5Cl 的络合诱导了聚合物从纳米管上动态解包裹的构象变化,从而得到原始的 s-SWCNTs。