Bai Lan, Lin Yanxia, Chen Xingxing, Yin Huimin, Jin Chuanhong, Wang Youzhen, Zhang Zhiyong, Peng Lian-Mao, Liang Xuelei, Cao Yu
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.
Institute of Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan 030012, China.
ACS Nano. 2024 Aug 27;18(34):23392-23402. doi: 10.1021/acsnano.4c06700. Epub 2024 Aug 14.
Semiconducting carbon nanotubes (s-CNTs) have emerged as a promising alternative to traditional silicon for ultrascaled field-effect transistors (FETs), owing to their exceptional properties. Aligned s-CNTs (A-CNTs) are particularly favored for practical applications due to their ability to provide higher driving current and lower contact resistance compared with individual s-CNTs or random networks. Achieving high-semiconducting-purity A-CNTs typically involves conjugated polymer wrapping for selective separation of s-CNTs, followed by self-assembly techniques. However, the presence of the polymer wrapper on A-CNTs can adversely impact electrical contact, gating efficiency, carrier transport, and device-to-device variations, necessitating its complete removal. While various methods have been explored for polymer removal, accurately characterizing the extent of removal remains a challenge. Traditional techniques such as absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) may not accurately depict the remaining polymer content on A-CNTs due to their inherent detection limits. Consequently, the performance of FETs based on pure polymer-wrapper-free A-CNTs is unclear. In this study, we present an approach for preparing high-semiconducting-purity and polymer-wrapper-free A-CNTs using poly[(9,9-dioctylfluorenyl-2,7-dinitrilomethine)-(9,9-dioctylfluorenyl-2,7-dimethine)] (PFO-N-PFO), a degradable polymer, in conjunction with a modified dimension-limited self-alignment process (m-DLSA). Comprehensive transmission electron microscopy (TEM) characterizations, complemented by absorption and XPS characterizations, provide robust evidence of the successful near-complete removal of the polymer wrapper via a cleaning procedure involving acidic degradation, hot solvent rinsing, and vacuum annealing. Furthermore, top-gated FETs based on these high-semiconducting-purity and polymer-wrapper-free A-CNTs exhibit good performance metrics, including an on-current () of 2.2 mA/μm, peak transconductance () of 1.1 mS/μm, low contact resistance () of 191 Ω·μm, and negligible hysteresis, representing a significant advancement in the CNT-based FET technology.
由于其卓越的性能,半导体碳纳米管(s-CNTs)已成为传统硅在超大规模场效应晶体管(FETs)领域有前景的替代材料。与单个s-CNTs或随机网络相比,排列整齐的s-CNTs(A-CNTs)能够提供更高的驱动电流和更低的接触电阻,因此在实际应用中特别受青睐。实现高半导体纯度的A-CNTs通常需要用共轭聚合物包裹以选择性分离s-CNTs,然后采用自组装技术。然而,A-CNTs上聚合物包裹层的存在会对电接触、门控效率、载流子传输以及器件间的差异产生不利影响,因此需要将其完全去除。虽然已经探索了各种去除聚合物的方法,但准确表征去除程度仍然是一个挑战。由于吸收光谱和X射线光电子能谱(XPS)等传统技术存在固有的检测限,可能无法准确描绘A-CNTs上剩余的聚合物含量。因此,基于无聚合物包裹层的纯A-CNTs的FETs性能尚不清楚。在本研究中,我们提出了一种使用可降解聚合物聚[(9,9-二辛基芴基-2,7-二腈基亚甲基)-(9,9-二辛基芴基-2,7-二亚甲基)](PFO-N-PFO)结合改进的尺寸受限自对准工艺(m-DLSA)来制备高半导体纯度且无聚合物包裹层的A-CNTs的方法。综合透射电子显微镜(TEM)表征,辅以吸收和XPS表征,通过涉及酸性降解、热溶剂冲洗和真空退火的清洗程序,有力地证明了聚合物包裹层已成功近乎完全去除。此外,基于这些高半导体纯度且无聚合物包裹层的A-CNTs的顶栅FETs表现出良好的性能指标,包括导通电流()为2.2 mA/μm、峰值跨导()为1.1 mS/μm、低接触电阻()为191 Ω·μm以及可忽略不计的滞后现象,这代表了基于碳纳米管的FET技术的重大进展。