School of Chemical Engineering and Light Industry, Guangdong University of Technology , Guangzhou 510006, China.
Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology , Guangzhou 510006, China.
ACS Appl Mater Interfaces. 2017 Aug 30;9(34):29203-29212. doi: 10.1021/acsami.7b06925. Epub 2017 Aug 17.
FeO nanocrystals with five different morphologies (i.e., nanospheres, nanorods, nanocubes, nano-octahedrons, and nanoplates) were acquired using a simple, efficient, and economic microwave-assisted oxidation technique. The microstructure, morphology, predominant exposed facets, and iron atom local environment of FeO were revealed by powder X-ray diffraction (PXRD), scanning transmission electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectrometer (XPS), and Mössbauer spectrum. We demonstrated that the heterogeneous UVA/Fenton catalytic activities of FeO nanocrystals are morphology/facets dependent. Under UVA irradiation, the catalytic activity of the as-prepared FeO was in the sequence of nanospheres > nanoplates > nano-octahedrons ≈ nanocubes > nanorods > nano-octahedrons (by coprecipitation). The dominating factor for the catalytic performance was the particle size and BET specific surface area; moreover, the exposed {111} facets, which contained more Fe species, on the nanocrystal surface led to a stronger UVA/Fenton catalytic activity. Both OH and O radicals participated in the UVA/Fenton degradation process, and OH played the dominant role. These morphology-controlled nanomagnetites showed great potential in applications as heterogeneous UVA/Fenton catalysts for effectively treating nonbiodegradable organic pollutants.
采用简单、高效、经济的微波辅助氧化技术,获得了具有五种不同形貌(即纳米球、纳米棒、纳米立方体、纳米八面体和纳米板)的 FeO 纳米晶体。通过粉末 X 射线衍射(PXRD)、扫描透射电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)、X 射线光电子能谱(XPS)和穆斯堡尔谱揭示了 FeO 的微观结构、形貌、主要暴露晶面和铁原子局部环境。我们证明了 FeO 纳米晶体的非均相 UVA/Fenton 催化活性是形态/晶面依赖性的。在 UVA 照射下,所制备的 FeO 的催化活性顺序为纳米球>纳米板>纳米八面体≈纳米立方体>纳米棒>纳米八面体(共沉淀法)。催化性能的主要因素是颗粒尺寸和 BET 比表面积;此外,纳米晶体表面上暴露的{111}晶面含有更多的 Fe 物种,导致更强的 UVA/Fenton 催化活性。OH 和 O 自由基都参与了 UVA/Fenton 降解过程,其中 OH 起主导作用。这些形貌可控的纳米磁铁矿在作为非均相 UVA/Fenton 催化剂有效处理难生物降解有机污染物方面具有很大的应用潜力。