López-Sánchez Jesús, Del Campo Adolfo, Quesada Adrián, Rivelles Alejandro, Abuín Manuel, Sainz Raquel, Sebastiani-Tofano Eugenia, Rubio-Zuazo Juan, Ochoa Diego A, Fernández José F, García José E, Rubio-Marcos Fernando
Department of Electroceramics, Instituto de Cerámica y Vidrio─Consejo Superior de Investigaciones Científicas (ICV─CSIC), 28049 Madrid, Spain.
Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19866-19876. doi: 10.1021/acsami.4c02551. Epub 2024 Apr 8.
The concept of multiphysics, where materials respond to diverse external stimuli, such as magnetic fields, electric fields, light irradiation, stress, heat, and chemical reactions, plays a fundamental role in the development of innovative devices. Nanomanufacturing, especially in low-dimensional systems, enhances the synergistic interactions taking place on the nanoscale. Light-matter interaction, rather than electric fields, holds great promise for achieving low-power, wireless control over magnetism, solving two major technological problems: the feasibility of electrical contacts at smaller scales and the undesired heating of the devices. Here, we shed light on the remarkable reversible modulation of magnetism using visible light in epitaxial FeO/BaTiO heterostructure. This achievement is underpinned by the convergence of two distinct mechanisms. First, the magnetoelastic effect, triggered by ferroelectric domain switching, induces a proportional change in coercivity and remanence upon laser illumination. Second, light-matter interaction induces charged ferroelectric domain walls' electrostatic decompensations, acting intimately on the magnetization of the epitaxial FeO film by magnetoelectric coupling. Crucially, our experimental results vividly illustrate the capability to manipulate magnetic properties using visible light. This concomitant mechanism provides a promising avenue for low-intensity visible-light manipulation of magnetism, offering potential applications in multiferroic devices.
多物理场概念,即材料对诸如磁场、电场、光照射、应力、热和化学反应等多种外部刺激做出响应,在创新器件的发展中起着基础性作用。纳米制造,尤其是在低维系统中,增强了在纳米尺度上发生的协同相互作用。光与物质的相互作用,而非电场,对于实现对磁性的低功耗、无线控制具有巨大潜力,解决了两个主要技术问题:更小尺度下电接触的可行性以及器件不必要的发热问题。在此,我们揭示了在外延FeO/BaTiO异质结构中利用可见光对磁性进行显著的可逆调制。这一成果由两种不同机制的结合所支撑。首先,由铁电畴切换引发的磁弹效应,在激光照射时会引起矫顽力和剩磁成比例变化。其次,光与物质的相互作用会引发带电铁电畴壁的静电去补偿,通过磁电耦合对外延FeO薄膜的磁化产生直接作用。至关重要的是,我们的实验结果生动地展示了利用可见光操控磁性特性的能力。这种伴随机制为低强度可见光操控磁性提供了一条有前景的途径,在多铁性器件中具有潜在应用。