Suppr超能文献

生理和转录组分析验证了先前关于受伤胡萝卜中产生酚类抗氧化剂的主要代谢变化的发现。

Physiological and Transcriptomic Analysis Validates Previous Findings of Changes in Primary Metabolism for the Production of Phenolic Antioxidants in Wounded Carrots.

机构信息

College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China.

College of Agriculture, Liaocheng University , Liaocheng 252000, People's Republic of China.

出版信息

J Agric Food Chem. 2017 Aug 23;65(33):7159-7167. doi: 10.1021/acs.jafc.7b01137. Epub 2017 Aug 11.

Abstract

Wounding induces the accumulation of phenolic compounds in carrot. This study uses physiological and transcriptomic analysis to validate previous findings relating primary metabolism and secondary metabolites in wounded carrots. Our data confirmed that increased wounding intensity strengthened the accumulation of phenolics accompanied by enhancing respiration and showed the loss of fructose and glucose and the increase of energy status in carrots. In addition, transcriptomic evaluation of shredded carrots indicated that the respiratory metabolism, sugar metabolism, energy metabolism, and phenolic biosynthesis related pathways, such as "citrate cycle (TCA cycle)", "oxidative phosphorylation" and "phenylpropanoid biosynthesis", were activated by wounding. Also, the differentially expressed genes (DEGs) involved in the conversion of sugars to phenolics were extensively up-regulated after wounding. Thus, the physiological and transcriptomic data validate previous findings that wounding accelerates the primary metabolisms of carrot including respiratory metabolism, sugar metabolism, and energy metabolism to meet the demand for the production of phenolic antioxidants.

摘要

创伤会导致胡萝卜中酚类化合物的积累。本研究通过生理和转录组分析验证了先前关于受伤胡萝卜中初级代谢物和次生代谢物的研究结果。我们的数据证实,增加创伤强度会增强酚类物质的积累,同时增强呼吸作用,并显示出胡萝卜中果糖和葡萄糖的损失以及能量状态的增加。此外,对切碎的胡萝卜进行转录组评估表明,呼吸代谢、糖代谢、能量代谢和与酚类生物合成相关的途径,如“柠檬酸循环(TCA 循环)”、“氧化磷酸化”和“苯丙烷生物合成”,在受伤后被激活。此外,参与将糖转化为酚类物质的差异表达基因(DEGs)在受伤后广泛上调。因此,生理和转录组数据验证了先前的发现,即创伤会加速包括呼吸代谢、糖代谢和能量代谢在内的胡萝卜的初级代谢,以满足酚类抗氧化剂产生的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验