Suppr超能文献

采用具有空间成分的自回归分布滞后模型对疟疾发病率进行建模。

Modelling malaria incidence by an autoregressive distributed lag model with spatial component.

作者信息

Laguna Francisco, Grillet María Eugenia, León José R, Ludeña Carenne

机构信息

Laboratorio de Biología de vectores y Parásitos, Instituto de Zoología y Ecología Tropical. Facultad de Ciencias. Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041, Venezuela.

Escuela de Matemática. Facultad de Ciencias. Universidad Central de Venezuela, Los Chaguaramos, Caracas 1041, Venezuela.

出版信息

Spat Spatiotemporal Epidemiol. 2017 Aug;22:27-37. doi: 10.1016/j.sste.2017.05.001. Epub 2017 Jun 8.

Abstract

The influence of climatic variables on the dynamics of human malaria has been widely highlighted. Also, it is known that this mosquito-borne infection varies in space and time. However, when the data is spatially incomplete most popular spatio-temporal methods of analysis cannot be applied directly. In this paper, we develop a two step methodology to model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, and humidity as well as the regional sea surface temperatures (SST) in the northern coast of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our results show that the best model to account for the variations of malaria incidence from 2001 to 2008 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model that included the accumulated local precipitation in combination with the local maximum temperature of the preceding month as positive regressors. Additionally, we show that although malaria dynamics is highly heterogeneous in space, a detailed analysis of the estimated spatial parameters in our model yield important insights regarding the joint behavior of the disease incidence across the different counties in our study.

摘要

气候变量对人类疟疾动态的影响已得到广泛关注。此外,众所周知,这种由蚊子传播的感染在空间和时间上存在差异。然而,当数据在空间上不完整时,大多数流行的时空分析方法无法直接应用。在本文中,我们开发了一种两步法,用于模拟委内瑞拉北部海岸疟疾发病率与当地降雨、温度、湿度以及区域海表面温度(SST)之间的时空依赖性。首先,我们对每周数据拟合自回归分布滞后模型(ARDL),然后,我们对ARDL的残差调整线性可分离空间向量自回归模型(VAR)。最后,使用源自Metropolis-Hastings算法的马尔可夫链蒙特卡罗(MCMC)程序对模型参数进行调整。我们的结果表明,用于解释委内瑞拉东北部10个疟疾流行市2001年至2008年疟疾发病率变化的最佳模型是一个logit模型,该模型将累积的当地降水量与前一个月的当地最高温度作为正回归变量。此外,我们表明,尽管疟疾动态在空间上高度异质,但对我们模型中估计的空间参数进行详细分析,可以得出有关我们研究中不同县疾病发病率联合行为的重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验