Department of Mathematics and Informatics (DMI), Eduardo Mondlane University, Mozambique.
Malar J. 2011 Apr 17;10:93. doi: 10.1186/1475-2875-10-93.
Malaria is one of the principal health problems in Mozambique, representing 48% of total external consultations and 63% of paediatric hospital admissions in rural and general hospitals with 26.7% of total mortality. Plasmodium falciparum is responsible for 90% of all infections being also the species associated with most severe cases. The aim of this study was to identify zones of high malaria risk, showing their spatially and temporal pattern.
Space and time Poison model for the analysis of malaria data is proposed. This model allows for the inclusion of environmental factors: rainfall, temperature and humidity as predictor variables. Modelling and inference use the fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. The methodology is applied to analyse paediatric data arising from districts of Maputo province, Mozambique, between 2007 and 2008.
Malaria incidence risk is greater for children in districts of Manhiça, Matola and Magude. Rainfall and humidity are significant predictors of malaria incidence. The risk increased with rainfall (relative risk-RR: .006761, 95% interval: .001874, .01304), and humidity (RR: .049, 95% interval: .03048, .06531). Malaria incidence was found to be independent of temperature.
The model revealed a spatial and temporal pattern of malaria incidence. These patterns were found to exhibit a stable malaria transmission in most non-coastal districts. The findings may be useful for malaria control, planning and management.
疟疾是莫桑比克主要的健康问题之一,占农村和综合医院总门诊量的 48%,占儿科住院量的 63%,总死亡率的 26.7%。恶性疟原虫是所有感染的 90%,也是与大多数严重病例相关的物种。本研究旨在确定疟疾高风险区域,并展示其时空模式。
提出了一种用于疟疾数据分析的空间和时间 Poison 模型。该模型允许将环境因素(降雨量、温度和湿度)作为预测变量纳入。建模和推理使用通过马尔可夫链蒙特卡罗(MCMC)模拟技术的全贝叶斯方法。该方法应用于分析 2007 年至 2008 年间莫桑比克马普托省各地区的儿科数据。
马希卡、马托拉和马格德区的儿童疟疾发病率风险较高。降雨量和湿度是疟疾发病率的重要预测因子。风险随降雨量增加(相对风险-RR:.006761,95%区间:.001874,.01304)和湿度(RR:.049,95%区间:.03048,.06531)而增加。疟疾发病率与温度无关。
该模型揭示了疟疾发病率的时空模式。这些模式表明,在大多数非沿海地区存在稳定的疟疾传播。研究结果可能对疟疾控制、规划和管理有用。