Wang Rui, Shen Yuan, Tino Peter, Welchman Andrew E, Kourtzi Zoe
Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom.
J Neurosci. 2017 Aug 30;37(35):8412-8427. doi: 10.1523/JNEUROSCI.0144-17.2017. Epub 2017 Jul 31.
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics.
当置身于一个新环境中时,我们面临着解读最初难以理解的感官信息流的挑战。然而,大脑很快就能在这些传入信号中找到结构和意义,帮助我们预测未来的行动并做好准备。这项技能依赖于提取环境中事件流的统计信息,这些事件流包含从简单重复模式到复杂概率组合的各种复杂程度的规律。在此,我们测试介导我们适应环境统计信息并预测即将发生事件能力的大脑机制。通过对人类参与者(男性和女性)进行行为训练和多时段功能磁共振成像(fMRI),我们追踪介导时间序列学习的皮质纹状体机制,因为它们在结构复杂性上发生变化。我们表明,预测结构的学习与个体决策策略有关;也就是说,在给定情境中选择最可能的结果(最大化)与匹配精确的序列统计信息。这些策略涉及不同的人类大脑区域:最大化策略涉及背外侧前额叶、扣带回、感觉运动区域和基底神经节(背侧尾状核、壳核),而匹配策略涉及枕颞区域(包括海马体)和基底神经节(腹侧尾状核)。我们的研究结果为不同的皮质纹状体机制提供了证据,这些机制有助于我们提取与行为相关的统计信息以进行预测。对未来事件进行预测依赖于解读最初可能看似难以理解的信息流。过去的研究探讨了人类如何识别重复模式和联想配对。然而,自然环境包含从简单重复到复杂概率组合等不同复杂程度的规律。在此,我们结合行为和多时段fMRI来追踪介导我们适应环境统计信息变化能力的大脑机制。我们为学习复杂时间统计信息提供了一条替代途径的证据:在给定情境中提取最可能的结果是通过执行和运动皮质纹状体机制之间的相互作用实现的,而支持精确时间统计信息学习的是视觉皮质纹状体回路(包括海马皮质)。