Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, 43125, Italy
Università di Parma, Dipartimento di Medicina e Chirurgia, Parma, 43125, Italy.
J Neurosci. 2021 Feb 17;41(7):1455-1469. doi: 10.1523/JNEUROSCI.1475-20.2020. Epub 2020 Dec 29.
In the macaque brain, projections from distant, interconnected cortical areas converge in specific zones of the striatum. For example, specific zones of the motor putamen are targets of projections from frontal motor, inferior parietal, and ventrolateral prefrontal hand-related areas and thus are integral part of the so-called "lateral grasping network." In the present study, we analyzed the laminar distribution of corticostriatal neurons projecting to different parts of the motor putamen. Retrograde neural tracers were injected in different parts of the putamen in 3 (one male) and the laminar distribution of the labeled corticostriatal neurons was analyzed quantitatively. In frontal motor areas and frontal operculum, where most labeled cells were located, almost everywhere the proportion of corticostriatal labeled neurons in layers III and/or VI was comparable or even stronger than in layer V. Furthermore, within these regions, the laminar distribution pattern of corticostriatal labeled neurons largely varied independently from their density and from the projecting area/sector, but likely according to the target striatal zone. Accordingly, the present data show that cortical areas may project in different ways to different striatal zones, which can be targets of specific combinations of signals originating from the various cortical layers of the areas of a given network. These observations extend current models of corticostriatal interactions, suggesting more complex modes of information processing in the basal ganglia for different motor and nonmotor functions and opening new questions on the architecture of the corticostriatal circuitry. Projections from the ipsilateral cerebral cortex are the major source of input to the striatum. Previous studies have provided evidence for distinct zones of the putamen specified by converging projections from specific sets of interconnected cortical areas. The present study shows that the distribution of corticostriatal neurons in the various layers of the primary motor and premotor areas varies depending on the target striatal zone. Accordingly, different striatal zones collect specific combinations of signals from the various cortical layers of their input areas, possibly differing in terms of coding, timing, and direction of information flow (e.g., feed-forward, or feed-back).
在猕猴大脑中,来自遥远的、相互连接的皮质区域的投射会聚在纹状体的特定区域。例如,运动纹状体的特定区域是来自额叶运动、下顶叶和腹外侧前额手相关区域的投射的靶点,因此是所谓的“外侧抓握网络”的组成部分。在本研究中,我们分析了投射到运动纹状体不同区域的皮质纹状体神经元的层分布。在 3 只猕猴(1 只为雄性)的不同纹状体区域注射逆行神经示踪剂,并对标记的皮质纹状体神经元的层分布进行定量分析。在额叶运动区和额侧盖,大多数标记细胞位于此处,几乎所有的皮质纹状体标记神经元在第三和/或第六层的比例与第五层相当或甚至更强。此外,在这些区域内,皮质纹状体标记神经元的层分布模式与其密度以及投射区域/扇区大致独立,但可能与目标纹状体区域有关。因此,目前的数据表明,皮质区域可能以不同的方式投射到不同的纹状体区域,这些区域可能是来自特定网络的各个皮质层的特定信号组合的靶点。这些观察结果扩展了皮质纹状体相互作用的现有模型,表明基底节中不同的运动和非运动功能的信息处理可能具有更复杂的模式,并为皮质纹状体电路的结构提出了新的问题。来自对侧大脑皮层的投射是纹状体的主要输入源。先前的研究为来自特定的相互连接的皮质区域的会聚投射所指定的特定的苍白球区域提供了证据。本研究表明,初级运动和运动前区各层的皮质纹状体神经元的分布取决于目标纹状体区域。因此,不同的纹状体区域从其输入区域的各个皮质层收集特定的信号组合,可能在编码、时间和信息流方向(例如,前馈或反馈)方面存在差异。