Suppr超能文献

不确定性下的灵活结构学习

Flexible structure learning under uncertainty.

作者信息

Wang Rui, Gates Vael, Shen Yuan, Tino Peter, Kourtzi Zoe

机构信息

State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Front Neurosci. 2023 Aug 3;17:1195388. doi: 10.3389/fnins.2023.1195388. eCollection 2023.

Abstract

Experience is known to facilitate our ability to interpret sequences of events and make predictions about the future by extracting temporal regularities in our environments. Here, we ask whether uncertainty in dynamic environments affects our ability to learn predictive structures. We exposed participants to sequences of symbols determined by first-order Markov models and asked them to indicate which symbol they expected to follow each sequence. We introduced uncertainty in this prediction task by manipulating the: (a) probability of symbol co-occurrence, (b) stimulus presentation rate. Further, we manipulated feedback, as it is known to play a key role in resolving uncertainty. Our results demonstrate that increasing the similarity in the probabilities of symbol co-occurrence impaired performance on the prediction task. In contrast, increasing uncertainty in stimulus presentation rate by introducing temporal jitter resulted in participants adopting a strategy closer to probability maximization than matching and improving in the prediction tasks. Next, we show that feedback plays a key role in learning predictive statistics. Trial-by-trial feedback yielded stronger improvement than block feedback or no feedback; that is, participants adopted a strategy closer to probability maximization and showed stronger improvement when trained with trial-by-trial feedback. Further, correlating individual strategy with learning performance showed better performance in structure learning for observers who adopted a strategy closer to maximization. Our results indicate that executive cognitive functions (i.e., selective attention) may account for this individual variability in strategy and structure learning ability. Taken together, our results provide evidence for flexible structure learning; individuals adapt their decision strategy closer to probability maximization, reducing uncertainty in temporal sequences and improving their ability to learn predictive statistics in variable environments.

摘要

众所周知,经验有助于我们通过提取环境中的时间规律来解释事件序列并对未来做出预测。在此,我们探讨动态环境中的不确定性是否会影响我们学习预测结构的能力。我们让参与者接触由一阶马尔可夫模型确定的符号序列,并要求他们指出每个序列之后他们预期会出现的符号。我们通过操纵以下因素在这个预测任务中引入不确定性:(a)符号共现的概率,(b)刺激呈现速率。此外,我们还操纵了反馈,因为已知反馈在解决不确定性方面起着关键作用。我们的结果表明,增加符号共现概率的相似性会损害预测任务的表现。相反,通过引入时间抖动增加刺激呈现速率的不确定性,导致参与者在预测任务中采用更接近概率最大化而非匹配的策略,并且表现有所提高。接下来,我们表明反馈在学习预测统计方面起着关键作用。逐次试验反馈比成组反馈或无反馈产生更强的提升效果;也就是说,当通过逐次试验反馈进行训练时,参与者采用更接近概率最大化的策略,并且表现出更强的提升。此外,将个体策略与学习表现相关联发现,对于采用更接近最大化策略的观察者,其在结构学习方面表现更好。我们的结果表明,执行认知功能(即选择性注意)可能是策略和结构学习能力中个体差异的原因。综上所述,我们的结果为灵活的结构学习提供了证据;个体将他们的决策策略调整得更接近概率最大化,减少时间序列中的不确定性,并提高他们在可变环境中学习预测统计的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1be9/10437075/67494335d1a7/fnins-17-1195388-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验