Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany.
Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764, Neuherberg, Germany.
Sci Rep. 2017 Jul 31;7(1):6942. doi: 10.1038/s41598-017-06946-x.
Magnetic cell sorting provides a valuable complementary mechanism to fluorescent techniques, especially if its parameters can be fine-tuned. In addition, there has recently been growing interest in studying naturally occurring magnetic cells and genetic engineering of cells to render them magnetic in order to control molecular processes via magnetic fields. For such approaches, contamination-free magnetic separation is an essential capability. We here present a robust and tunable microfluidic sorting system in which magnetic gradients of up to 1700 T/m can be applied to cells flowing through a sorting channel by reversible magnetization of ferrofluids. Visual control of the sorting process allowed us to optimize sorting efficiencies for a large range of sizes and magnetic moments of cells. Using automated quantification based on imaging of fluorescent markers, we showed that macrophages containing phagocytosed magnetic nanoparticles, with cellular magnetic dipole moments on the order of 10 fAm, could be sorted with an efficiency of 90 ± 1%. Furthermore, we successfully sorted intrinsically magnetic magnetotactic bacteria with magnetic moments of 0.1 fAm. In distinction to column-based magnetic sorting devices, microfluidic systems can prevent sample contact with superparamagnetic material. This ensures contamination-free separation of naturally occurring or bioengineered magnetic cells and is essential for downstream characterization of their properties.
磁细胞分选提供了一种有价值的荧光技术互补机制,特别是如果可以对其参数进行微调的话。此外,人们最近对研究天然存在的磁性细胞以及对细胞进行基因工程改造以使其具有磁性以通过磁场控制分子过程越来越感兴趣。对于此类方法,无污染的磁性分离是一项基本能力。我们在这里提出了一种稳健且可调的微流控分选系统,通过铁磁流体的可逆磁化,可以对流过分选通道的细胞施加高达 1700 T/m 的磁场梯度。通过对分选过程进行可视化控制,我们优化了针对大范围细胞尺寸和磁矩的分选效率。使用基于荧光标记物成像的自动定量,我们表明可以对含有吞噬磁性纳米颗粒的巨噬细胞进行分选,其细胞磁偶极矩约为 10 fAm,分选效率为 90±1%。此外,我们还成功地对磁矩为 0.1 fAm 的天然磁性趋磁细菌进行了分选。与基于柱的磁性分选设备不同,微流控系统可以防止样品与超顺磁材料接触。这确保了无污染分离天然存在或经过生物工程改造的磁性细胞,并且对于它们的特性的下游表征是必不可少的。