Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA.
Nature. 2013 Apr 25;496(7446):486-9. doi: 10.1038/nature12072.
Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (for example, magnetic resonance imaging), or entail operating conditions that preclude application to living biological samples while providing submicrometre resolution (for example, scanning superconducting quantum interference device microscopy, electron holography and magnetic resonance force microscopy). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen-vacancy colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the nitrogen-vacancy quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria. We also spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field microscopy allows parallel optical and magnetic imaging of multiple cells in a population with submicrometre resolution and a field of view in excess of 100 micrometres. Scanning electron microscope images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. Our results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks.
磁成像技术是探测生物和物理系统的有力工具。然而,现有的技术要么与光学显微镜相比空间分辨率较差,因此通常不适用于亚细胞结构的成像(例如磁共振成像),要么需要操作条件,从而排除了在提供亚微米分辨率的同时应用于活生物样品的可能性(例如,扫描超导量子干涉器件显微镜、电子全息术和磁共振力显微镜)。在这里,我们展示了在环境实验室条件下使用包含纳米级氮空位色心层的光学检测磁场成像阵列对活细胞(趋磁细菌)进行的亚细胞空间分辨率(400 纳米)的磁成像,该氮空位色心层被植入钻石芯片的表面。将细菌放置在钻石表面上,我们光学探测氮空位量子自旋态,并快速重建由细菌中产生的磁性纳米颗粒(磁小体)链产生的磁场的矢量分量的图像。我们还将这些磁场图与在同一仪器中获得的光学图像进行空间相关。宽场显微镜允许以亚微米分辨率和超过 100 微米的视场对群体中的多个细胞进行并行光学和磁性成像。对细菌的扫描电子显微镜图像证实,相关的光学和磁性图像可用于定位和表征每个细菌中的磁小体。我们的结果为在环境条件下以高空间分辨率对活细胞中的生物磁结构进行成像提供了新的功能,并将能够绘制细胞和细胞网络内的各种磁场信号的图谱。