Olivon Florent, Roussi Fanny, Litaudon Marc, Touboul David
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
Anal Bioanal Chem. 2017 Sep;409(24):5767-5778. doi: 10.1007/s00216-017-0523-3. Epub 2017 Jul 31.
New omics sciences generate massive amounts of data, requiring to be sorted, curated, and statistically analyzed by dedicated software. Data-dependent acquisition mode including inclusion and exclusion rules for tandem mass spectrometry is routinely used to perform such analyses. While acquisition parameters are well described for proteomics, no general rule is currently available to generate reliable metabolomic data for molecular networking analysis on the Global Natural Product Social Molecular Networking platform (GNPS). Following on from an exploration of key parameters influencing the quality of molecular networks, universal optimal acquisition conditions for metabolomic studies are suggested in the present paper. The benefit of data pre-clustering before initiating large datasets for GNPS analyses is also demonstrated. Moreover, an efficient workflow dedicated to Agilent Technologies instruments is described, making the dereplication process easier by unambiguously distinguishing isobaric isomers eluted at different retention times, annotating the molecular networks with chemical formulas, and giving access to semi-quantitative data. This specific workflow foreshadows future developments of the GNPS platform.
新的组学技术产生了大量数据,需要通过专用软件进行分类、整理和统计分析。包括串联质谱的包含和排除规则在内的数据依赖型采集模式通常用于执行此类分析。虽然蛋白质组学的采集参数已有详细描述,但目前尚无通用规则可用于在全球天然产物社会分子网络平台(GNPS)上生成用于分子网络分析的可靠代谢组学数据。在探索了影响分子网络质量的关键参数之后,本文提出了代谢组学研究的通用最佳采集条件。还证明了在为GNPS分析启动大型数据集之前进行数据预聚类的好处。此外,还描述了一种适用于安捷伦科技仪器的高效工作流程,通过明确区分在不同保留时间洗脱的同量异位异构体、用化学式注释分子网络并提供半定量数据,使去重过程更加容易。这种特定的工作流程预示着GNPS平台的未来发展。