Suppr超能文献

基于分子网络导向的参数优化提高代谢组学中小分子的检测和注释。

Enhanced detection and annotation of small molecules in metabolomics using molecular-network-oriented parameter optimization.

机构信息

Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.

James Comprehensive Cancer Center, The Ohio State University, 400 W 12th Ave, Columbus, Ohio 43210, USA.

出版信息

Mol Omics. 2021 Oct 11;17(5):665-676. doi: 10.1039/d1mo00005e.

Abstract

Metabolomics, especially the large-scale untargeted metabolomics, generates massive amounts of data on a regular basis, which often needs to be filtered, screened, analyzed and annotated a variety of approaches. Data-dependent-acquisition (DDA) mode including inclusion and exclusion rules for tandem mass spectrometry (MS) is routinely used to perform such analyses. While the parameters of data acquisition are important in these processes, there is a lack of systematic studies on these parameters that can be used in data collection to generate metabolic features for molecular-network (MN) analysis on the Global Natural Products Social Molecular Networking (GNPS) platform. To explore the key parameters that impact the formation and quality of MNs, several data-acquisition parameters for metabolomic studies were proposed in this study. The influences of MS resolution, normalized collision energy (NCE), intensity threshold, and exclusion time on GNPS analyses were demonstrated. Moreover, an optimization workflow dedicated to Thermo Scientific QE Hybrid Orbitrap instruments is described, and a comparison of phytochemical contents from two forms of black raspberry extract was performed based on the GNPS MN results. Overall, we expect this study to provide additional thoughts on developing a natural-product-analysis workflow using the GNPS network, and to shed some light on future analyses that utilize similar instrumental setups.

摘要

代谢组学,特别是大规模非靶向代谢组学,经常会产生大量的数据,这些数据通常需要通过各种方法进行过滤、筛选、分析和注释。数据依赖型采集 (DDA) 模式包括串联质谱 (MS) 的包含和排除规则,通常用于执行此类分析。虽然在这些过程中数据采集的参数很重要,但缺乏关于这些参数的系统研究,这些参数可以用于数据采集,以在全球天然产物社会分子网络 (GNPS) 平台上生成分子网络 (MN) 分析的代谢特征。为了探索影响 MN 形成和质量的关键参数,本研究提出了几种代谢组学研究的数据采集参数。展示了 MS 分辨率、归一化碰撞能 (NCE)、强度阈值和排除时间对 GNPS 分析的影响。此外,还描述了专门针对赛默飞世尔科技 QE 混合动力轨道阱仪器的优化工作流程,并根据 GNPS MN 结果比较了两种形式的黑莓提取物的植物化学成分含量。总的来说,我们希望这项研究能够为使用 GNPS 网络开发天然产物分析工作流程提供更多思路,并为未来利用类似仪器设置进行的分析提供一些启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/267d/8511212/a90941f091e0/nihms-1731283-f0001.jpg

相似文献

6
Secondary Metabolic Pathway-Targeted Metabolomics.次生代谢途径靶向代谢组学
Methods Mol Biol. 2016;1401:175-95. doi: 10.1007/978-1-4939-3375-4_12.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验