International Research Center for Elements Science, Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan.
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University , Kyoto, 615-8510, Japan.
J Am Chem Soc. 2017 Aug 9;139(31):10693-10701. doi: 10.1021/jacs.7b03867. Epub 2017 Aug 1.
We have developed a novel diastereoselective iron-catalyzed cross-coupling reaction of various glycosyl halides with aryl metal reagents for the efficient synthesis of aryl C-glycosides, which are of significant pharmaceutical interest due to their biological activities and resistance toward metabolic degradation. A variety of aryl, heteroaryl, and vinyl metal reagents can be cross-coupled with glycosyl halides in high yields in the presence of a well-defined iron complex, composed of iron(II) chloride and a bulky bisphosphine ligand, TMS-SciOPP. The chemoselective nature of the reaction allows the use of synthetically versatile acetyl-protected glycosyl donors and the incorporation of various functional groups on the aryl moieties, producing a diverse array of aryl C-glycosides, including Canagliflozin, an inhibitor of sodium-glucose cotransporter 2 (SGLT2), and a prevailing diabetes drug. The cross-coupling reaction proceeds via generation and stereoselective trapping of glycosyl radical intermediates, representing a rare example of highly stereoselective carbon-carbon bond formation based on iron catalysis. Radical probe experiments using 3,4,6-tri-O-acetyl-2-O-allyl-α-d-glucopyranosyl bromide (8) and 6-bromo-1-hexene (10) confirm the generation and intermediacy of the corresponding glycosyl radicals. Density functional theory (DFT) calculations reveal that the observed anomeric diastereoselectivity is attributable to the relative stability of the conformers of glycosyl radical intermediates. The present cross-coupling reaction demonstrates the potential of iron-catalyzed stereo- and chemoselective carbon-carbon bond formation in the synthesis of bioactive compounds of certain structural complexity.
我们开发了一种新颖的非对映选择性铁催化的各种糖基卤化物与芳基金属试剂的交叉偶联反应,用于高效合成芳基 C-糖苷,由于其生物活性和对代谢降解的抗性,它们具有重要的药物学意义。在由氯化亚铁和大位阻双膦配体 TMS-SciOPP 组成的定义明确的铁配合物的存在下,各种芳基、杂芳基和乙烯基金属试剂可以与糖基卤化物以高产率进行交叉偶联。反应的化学选择性允许使用合成多功能的乙酰保护糖基供体,并在芳基部分上引入各种官能团,从而产生各种芳基 C-糖苷,包括 Canagliflozin,一种钠-葡萄糖共转运蛋白 2(SGLT2)抑制剂和一种流行的糖尿病药物。交叉偶联反应通过糖基自由基中间体的生成和立体选择性捕获进行,代表了基于铁催化的高度立体选择性碳-碳键形成的罕见实例。使用 3,4,6-三-O-乙酰基-2-O-烯丙基-α-D-吡喃葡萄糖基溴化物(8)和 6-溴-1-己烯(10)进行的自由基探针实验证实了相应糖基自由基的生成和中间体性。密度泛函理论(DFT)计算表明,观察到的非对映选择性归因于糖基自由基中间体构象的相对稳定性。目前的交叉偶联反应证明了铁催化的立体和化学选择性碳-碳键形成在某些结构复杂性的生物活性化合物合成中的潜力。