Vélez-Reséndiz Juan Manuel, Vélez-Arvízu Juan Jesús
Cardiovascular Pharmacology and Nanomedicine Multidisciplinary Laboratory, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico.
Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Gac Med Mex. 2017 May-Jun;153(3):354-360.
Cardiovascular disease, which today represents the main cause of death worldwide, is a likely candidate for the application of nanotechnology in the near future. Nanocarriers are currently being developed to deliver medicine (smart drugs) to selected targets in cells and tissues of blood vessels and the heart, as well as to aid in diagnosis and screening for early detection and individualized treatment. Other applications of nanotechnology hold promise for the long run, such as using nanodevices for drug delivery or correcting the misfolding of proteins. With super-potent effects, nanoparticles should be able to evoke therapeutic effects at a lower dose and for longer periods. The development of nanodevices and nanocarriers must take an integral approach that considers many properties-physical, chemical, biological, biochemical, anatomical, morphological, physiological, pharmacological, toxicological, mechanical, electrical, magnetic, thermodynamic, and optical-in order to evaluate biocompatibility and therefore avoid toxicological and/or other adverse effects. Intensified research in relation to nanocarriers and other nanotechnology could help reduce morbidity and mortality in cardiovascular disease.
心血管疾病是当今全球主要的死因,它很可能在不久的将来成为纳米技术应用的对象。目前正在研发纳米载体,以便将药物(智能药物)输送到血管和心脏的细胞及组织中的特定靶点,同时辅助诊断和筛查,实现早期检测和个性化治疗。纳米技术的其他应用从长远来看也很有前景,比如使用纳米装置进行药物递送或纠正蛋白质的错误折叠。纳米颗粒具有超强的效果,应该能够以较低剂量和更长时间产生治疗效果。纳米装置和纳米载体的研发必须采用综合方法,考虑许多特性——物理、化学、生物、生化、解剖、形态、生理、药理、毒理、机械、电气、磁性、热力学和光学等,以便评估生物相容性,从而避免毒理学和/或其他不良反应。加强对纳米载体和其他纳米技术的研究有助于降低心血管疾病的发病率和死亡率。