Suppr超能文献

卢旺达农村地区加强区级健康中心干预措施对医疗服务利用的影响:采用中断时间序列分析

Impact of a district-wide health center strengthening intervention on healthcare utilization in rural Rwanda: Use of interrupted time series analysis.

作者信息

Iyer Hari S, Hirschhorn Lisa R, Nisingizwe Marie Paul, Kamanzi Emmanuel, Drobac Peter C, Rwabukwisi Felix C, Law Michael R, Muhire Andrew, Rusanganwa Vincent, Basinga Paulin

机构信息

Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.

Partners In Health/Inshuti Mu Buzima, Kigali, Rwanda.

出版信息

PLoS One. 2017 Aug 1;12(8):e0182418. doi: 10.1371/journal.pone.0182418. eCollection 2017.

Abstract

BACKGROUND

Evaluations of health systems strengthening (HSS) interventions using observational data are rarely used for causal inference due to limited data availability. Routinely collected national data allow use of quasi-experimental designs such as interrupted time series (ITS). Rwanda has invested in a robust electronic health management information system (HMIS) that captures monthly healthcare utilization data. We used ITS to evaluate impact of an HSS intervention to improve primary health care facility readiness on health service utilization in two rural districts of Rwanda.

METHODS

We used controlled ITS analysis to compare changes in healthcare utilization at health centers (HC) that received the intervention (n = 13) to propensity score matched non-intervention health centers in Rwanda (n = 86) from January 2008 to December 2012. HC support included infrastructure renovation, salary support, medical equipment, referral network strengthening, and clinical training. Baseline quarterly mean outpatient visit rates and population density were used to model propensity scores. The intervention began in May 2010 and was implemented over a twelve-month period. We used monthly healthcare utilization data from the national Rwandan HMIS to study changes in the (1) number of facility deliveries per 10,000 women, (2) number of referrals for high risk pregnancy per 100,000 women, and (3) the number of outpatient visits performed per 1,000 catchment population.

RESULTS

PHIT HC experienced significantly higher monthly delivery rates post-HSS during the April-June season than comparison (3.19/10,000, 95% CI: [0.27, 6.10]). In 2010, this represented a 13% relative increase, and in 2011, this represented a 23% relative increase. The post-HSS change in monthly rate of high-risk pregnancies referred increased slightly in intervention compared to control HC (0.03/10,000, 95% CI: [-0.007, 0.06]). There was a small immediate post-HSS increase in outpatient visit rates in intervention compared to control HC (6.64/1,000, 95% CI: [-13.52, 26.81]).

CONCLUSION

We failed to find strong evidence of post-HSS increases in outpatient visit rates or referral rates at health centers, which could be explained by small sample size and high baseline nation-wide health service coverage. However, our findings demonstrate that high quality routinely collected health facility data combined with ITS can be used for rigorous policy evaluation in resource-limited settings.

摘要

背景

由于数据可用性有限,利用观察性数据对卫生系统强化(HSS)干预措施进行评估很少用于因果推断。常规收集的国家数据允许使用诸如中断时间序列(ITS)等准实验设计。卢旺达已投资建立了一个强大的电子健康管理信息系统(HMIS),该系统可收集每月的医疗保健利用数据。我们使用ITS来评估一项HSS干预措施对改善卢旺达两个农村地区初级卫生保健机构的准备情况对卫生服务利用的影响。

方法

我们使用对照ITS分析,比较了2008年1月至2012年12月期间在卢旺达接受干预的卫生中心(HC,n = 13)与倾向得分匹配的未干预卫生中心(n = 86)的医疗保健利用变化。对HC的支持包括基础设施翻新、薪资支持、医疗设备、加强转诊网络和临床培训。使用基线季度平均门诊就诊率和人口密度来建立倾向得分模型。干预于2010年5月开始,并在12个月内实施。我们使用卢旺达国家HMIS的每月医疗保健利用数据来研究以下方面的变化:(1)每10,000名妇女的机构分娩数;(2)每100,000名妇女的高危妊娠转诊数;(3)每1,000名集水区人口的门诊就诊数。

结果

在4月至6月季节,接受HSS干预后的PHIT卫生中心的月分娩率显著高于对照组(3.19/10,000,95%可信区间:[0.27, 6.10])。在2010年,这代表相对增加了13%,在2011年,这代表相对增加了23%。与对照卫生中心相比,干预组中高危妊娠转诊月率的HSS后变化略有增加(0.03/10,000,95%可信区间:[-0.007, 0.06])。与对照卫生中心相比,干预组在HSS后门诊就诊率立即有小幅增加(6.64/1,000,95%可信区间:[-13.52, 26.81])。

结论

我们未能找到有力证据表明卫生中心在HSS后门诊就诊率或转诊率有所增加,这可能是由于样本量小和全国范围内基线卫生服务覆盖率高所致。然而,我们的研究结果表明,高质量的常规收集的卫生设施数据与ITS相结合可用于资源有限环境下的严格政策评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2746/5538651/6f4de482b07f/pone.0182418.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验