Suppr超能文献

基于张量的化学主方程自适应解法。

An adaptive solution to the chemical master equation using tensors.

机构信息

Department of Mathematics, The University of Alabama, Tuscaloosa, Alabama 35487, USA.

出版信息

J Chem Phys. 2017 Jul 28;147(4):044102. doi: 10.1063/1.4994917.

Abstract

Solving the chemical master equation directly is difficult due to the curse of dimensionality. We tackle that challenge by a numerical scheme based on the quantized tensor train (QTT) format, which enables us to represent the solution in a compressed form that scales linearly with the dimension. We recast the finite state projection in this QTT framework and allow it to expand adaptively based on proven error criteria. The end result is a QTT-formatted matrix exponential that we evaluate through a combination of the inexact uniformization technique and the alternating minimal energy algorithm. Our method can detect when the equilibrium distribution is reached with an inexpensive test that exploits the structure of the tensor format. We successfully perform numerical tests on high-dimensional problems that had been out of reach for classical approaches.

摘要

由于维度诅咒,直接求解化学主方程很困难。我们通过基于量化张量树(QTT)格式的数值方案来应对这一挑战,该方案使我们能够以与维度线性扩展的压缩形式表示解。我们在这个 QTT 框架中重新构造有限状态投影,并根据经过验证的误差标准允许它自适应扩展。最终结果是一个 QTT 格式的矩阵指数,我们通过结合不精确均匀化技术和交替最小能量算法来评估它。我们的方法可以通过利用张量格式的结构来进行廉价的测试,从而检测何时达到平衡分布。我们成功地对经典方法无法处理的高维问题进行了数值测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验