Ion Ion Gabriel, Wildner Christian, Loukrezis Dimitrios, Koeppl Heinz, De Gersem Herbert
Centre for Computational Engineering, Technische Universität Darmstadt, Darmstadt, Germany.
Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt, Germany.
J Chem Phys. 2021 Jul 21;155(3):034102. doi: 10.1063/5.0045521.
In this work, we perform Bayesian inference tasks for the chemical master equation in the tensor-train format. The tensor-train approximation has been proven to be very efficient in representing high-dimensional data arising from the explicit representation of the chemical master equation solution. An additional advantage of representing the probability mass function in the tensor-train format is that parametric dependency can be easily incorporated by introducing a tensor product basis expansion in the parameter space. Time is treated as an additional dimension of the tensor and a linear system is derived to solve the chemical master equation in time. We exemplify the tensor-train method by performing inference tasks such as smoothing and parameter inference using the tensor-train framework. A very high compression ratio is observed for storing the probability mass function of the solution. Since all linear algebra operations are performed in the tensor-train format, a significant reduction in the computational time is observed as well.
在这项工作中,我们对张量列车格式的化学主方程执行贝叶斯推理任务。张量列车近似已被证明在表示由化学主方程解的显式表示产生的高维数据方面非常有效。以张量列车格式表示概率质量函数的另一个优点是,可以通过在参数空间中引入张量积基展开来轻松纳入参数依赖性。时间被视为张量的一个额外维度,并导出一个线性系统来及时求解化学主方程。我们通过使用张量列车框架执行诸如平滑和参数推断等推理任务来举例说明张量列车方法。在存储解的概率质量函数时观察到非常高的压缩率。由于所有线性代数运算均以张量列车格式执行,因此计算时间也显著减少。