Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
Semin Cell Dev Biol. 2018 Apr;76:142-153. doi: 10.1016/j.semcdb.2017.07.028. Epub 2017 Jul 29.
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
线粒体是细胞内具有重要和多样化功能的基本结构,包括细胞呼吸和铁硫簇生物发生。线粒体的功能依赖于细胞器的蛋白质组,蛋白质组的维持和调整取决于细胞的需求。大多数线粒体蛋白由核基因编码,必须在细胞质中合成后运输到细胞器并导入细胞器。这些核编码的线粒体前体利用动态的、多聚体的易位机器穿过细胞器的膜,并分配到适当的线粒体亚区室。酵母模型系统在建立线粒体蛋白输入机器和机制的分子基础方面发挥了重要作用,然而,在高等真核生物中,存在着独特的参与者和机制。在这里,我们回顾了人类细胞中线粒体蛋白输入的现有知识,以及这些途径的功能障碍如何导致疾病。