Department of Chemistry, ‡Department of Physics, §Department of Materials Science and Engineering, ∥Materials Research Institute, and ⊥Center for 2-Dimensional and Layered Materials, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.
J Am Chem Soc. 2017 Aug 16;139(32):11096-11105. doi: 10.1021/jacs.7b04443. Epub 2017 Aug 2.
Nanostructures of layered transition metal dichalcogenide (TMD) alloys with tunable compositions are promising candidates for a broad scope of applications in electronics, optoelectronics, topological devices, and catalysis. Most TMD alloy nanostructures are synthesized as films on substrates using gas-phase methods at high temperatures. However, lower temperature solution routes present an attractive alternative with the potential for larger-scale, higher-yield syntheses of freestanding, higher surface area materials. Here, we report the direct solution synthesis of colloidal few-layer TMD alloys, MoWSe and WSSe, exhibiting fully tunable metal and chalcogen compositions that span the MoSe-WSe and WS-WSe solid solutions, respectively. Chemical guidelines for achieving the targeted compounds are presented, along with comprehensive structural characterizations (X-ray diffraction, electron microscopy, Raman, and UV-visible spectroscopies). High-resolution microscopic imaging confirms the formation of TMD alloys and identifies a random distribution of the alloyed elements. Analysis of the tilt-angle dependency of the intensities associated with atomic-resolution annular dark field imaging line scans reveals the types of point vacancies present in the samples, thus providing atomic-level insights into the structures of colloidal TMD alloy nanostructures that were previously only accessible for substrate-confined films. The A excitonic transition of the TMD alloy nanostructures can be readily adjusted between 1.51 and 1.93 eV through metal and chalcogen alloying, correlating the compositional modulation to the realization of tunable optical properties.
具有可调组成的层状过渡金属二硫属化物 (TMD) 合金的纳米结构是电子学、光电学、拓扑器件和催化等广泛应用的有前途的候选材料。大多数 TMD 合金纳米结构是使用高温气相方法在衬底上合成的薄膜。然而,较低温度的溶液途径提供了一种有吸引力的替代方案,具有更大规模、更高产量合成独立、更高表面积材料的潜力。在这里,我们报告了胶体少层 TMD 合金 MoWSe 和 WSSe 的直接溶液合成,它们具有完全可调的金属和硫属元素组成,分别跨越 MoSe-WSe 和 WS-WSe 固溶体。提出了实现目标化合物的化学指南,以及全面的结构表征(X 射线衍射、电子显微镜、拉曼和紫外-可见光谱)。高分辨率微观成像证实了 TMD 合金的形成,并确定了合金元素的随机分布。分析与原子分辨率环形暗场成像线扫描相关的强度的倾斜角依赖性揭示了样品中存在的点空位类型,从而为胶体 TMD 合金纳米结构的结构提供了原子级的见解,这些结构以前仅适用于受限在衬底上的薄膜。TMD 合金纳米结构的 A 激子跃迁可以通过金属和硫属元素合金化在 1.51 和 1.93 eV 之间轻松调节,将组成调制与实现可调光学性质相关联。