Noma Kentaro, Goncharov Alexandr, Ellisman Mark H, Jin Yishi
Division of Biological Sciences, Neurobiology Section, University of California, San Diego, San Diego, United States.
Howard Hughes Medical Institute, University of California, San Diego, San Diego, United States.
Elife. 2017 Aug 2;6:e26376. doi: 10.7554/eLife.26376.
Subcellular localization of ribosomes defines the location and capacity for protein synthesis. Methods for in vivo visualizing ribosomes in multicellular organisms are desirable in mechanistic investigations of the cell biology of ribosome dynamics. Here, we developed an approach using split GFP for tissue-specific visualization of ribosomes in . Labeled ribosomes are detected as fluorescent puncta in the axons and synaptic terminals of specific neuron types, correlating with ribosome distribution at the ultrastructural level. We found that axonal ribosomes change localization during neuronal development and after axonal injury. By examining mutants affecting axonal trafficking and performing a forward genetic screen, we showed that the microtubule cytoskeleton and the JIP3 protein UNC-16 exert distinct effects on localization of axonal and somatic ribosomes. Our data demonstrate the utility of tissue-specific visualization of ribosomes , and provide insight into the mechanisms of active regulation of ribosome localization in neurons.
核糖体的亚细胞定位决定了蛋白质合成的位置和能力。在核糖体动力学细胞生物学的机制研究中,需要在多细胞生物体内对核糖体进行体内可视化的方法。在这里,我们开发了一种使用分裂绿色荧光蛋白(split GFP)对核糖体进行组织特异性可视化的方法。标记的核糖体在特定神经元类型的轴突和突触末端被检测为荧光点,这与超微结构水平上的核糖体分布相关。我们发现轴突核糖体在神经元发育过程中和轴突损伤后会改变定位。通过研究影响轴突运输的突变体并进行正向遗传筛选,我们表明微管细胞骨架和JIP3蛋白UNC-16对轴突和体细胞核糖体的定位有不同影响。我们的数据证明了核糖体组织特异性可视化的实用性,并为神经元中核糖体定位的主动调节机制提供了见解。