Suppr超能文献

使用纳米ε点法测定交联水凝胶的微观力学粘弹性特性

Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method.

作者信息

Mattei Giorgio, Cacopardo Ludovica, Ahluwalia Arti

机构信息

Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.

Optics11 B.V., De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

出版信息

Materials (Basel). 2017 Aug 2;10(8):889. doi: 10.3390/ma10080889.

Abstract

Engineering materials that recapitulate pathophysiological mechanical properties of native tissues in vitro is of interest for the development of biomimetic organ models. To date, the majority of studies have focused on designing hydrogels for cell cultures which mimic native tissue stiffness or quasi-static elastic moduli through a variety of crosslinking strategies, while their viscoelastic (time-dependent) behavior has been largely ignored. To provide a more complete description of the biomechanical environment felt by cells, we focused on characterizing the micro-mechanical viscoelastic properties of crosslinked hydrogels at typical cell length scales. In particular, gelatin hydrogels crosslinked with different glutaraldehyde (GTA) concentrations were analyzed via nano-indentation tests using the nano-epsilon dot method. The experimental data were fitted to a Maxwell Standard Linear Solid model, showing that increasing GTA concentration results in increased instantaneous and equilibrium elastic moduli and in a higher characteristic relaxation time. Therefore, not only do gelatin hydrogels become stiffer with increasing crosslinker concentration (as reported in the literature), but there is also a concomitant change in their viscoelastic behavior towards a more elastic one. As the degree of crosslinking alters both the elastic and viscous behavior of hydrogels, caution should be taken when attributing cell response merely to substrate stiffness, as the two effects cannot be decoupled.

摘要

在体外重现天然组织病理生理力学特性的工程材料对于仿生器官模型的开发具有重要意义。迄今为止,大多数研究都集中在设计用于细胞培养的水凝胶上,这些水凝胶通过各种交联策略模拟天然组织的硬度或准静态弹性模量,而它们的粘弹性(时间依赖性)行为在很大程度上被忽视了。为了更完整地描述细胞所感受到的生物力学环境,我们专注于在典型的细胞长度尺度上表征交联水凝胶的微观力学粘弹性特性。特别是,使用纳米ε点法通过纳米压痕试验分析了用不同浓度戊二醛(GTA)交联的明胶水凝胶。实验数据拟合到麦克斯韦标准线性固体模型,结果表明,增加GTA浓度会导致瞬时弹性模量和平衡弹性模量增加,以及特征弛豫时间延长。因此,明胶水凝胶不仅会随着交联剂浓度的增加而变硬(如文献报道),而且其粘弹性行为也会随之发生变化,变得更具弹性。由于交联程度会改变水凝胶的弹性和粘性行为,因此在仅将细胞反应归因于底物硬度时应谨慎,因为这两种效应无法解耦。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7aae/5578255/f004617208d7/materials-10-00889-g001.jpg

相似文献

2
The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.
J Mech Behav Biomed Mater. 2015 Oct;50:150-9. doi: 10.1016/j.jmbbm.2015.06.015. Epub 2015 Jun 24.
3
Engineering hydrogel viscoelasticity.
J Mech Behav Biomed Mater. 2019 Jan;89:162-167. doi: 10.1016/j.jmbbm.2018.09.031. Epub 2018 Sep 21.
4
Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
Acta Biomater. 2018 Apr 15;71:388-397. doi: 10.1016/j.actbio.2018.02.017. Epub 2018 Mar 1.
5
Beyond Linear Elastic Modulus: Viscoelastic Models for Brain and Brain Mimetic Hydrogels.
ACS Biomater Sci Eng. 2019 Aug 12;5(8):3964-3973. doi: 10.1021/acsbiomaterials.8b01390. Epub 2019 May 1.
7
Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels.
bioRxiv. 2024 Jun 4:2024.05.07.593040. doi: 10.1101/2024.05.07.593040.
8
Engineering Gels with Time-Evolving Viscoelasticity.
Materials (Basel). 2020 Jan 16;13(2):438. doi: 10.3390/ma13020438.
9
Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering.
J Biomed Mater Res B Appl Biomater. 2016 Feb;104(2):283-90. doi: 10.1002/jbm.b.33358. Epub 2015 Feb 27.
10
Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies.
Tissue Eng Part B Rev. 2022 Aug;28(4):912-925. doi: 10.1089/ten.TEB.2021.0151. Epub 2021 Dec 6.

引用本文的文献

1
Elucidating the combinatorial effect of substrate stiffness and surface viscoelasticity on cellular phenotype.
J Biomed Mater Res A. 2022 Jun;110(6):1224-1237. doi: 10.1002/jbm.a.37367. Epub 2022 Feb 1.
2
Characterizing and Engineering Biomimetic Materials for Viscoelastic Mechanotransduction Studies.
Tissue Eng Part B Rev. 2022 Aug;28(4):912-925. doi: 10.1089/ten.TEB.2021.0151. Epub 2021 Dec 6.
3
Patient-Specific 3-Dimensional Model of Smooth Muscle Cell and Extracellular Matrix Dysfunction for the Study of Aortic Aneurysms.
J Endovasc Ther. 2021 Aug;28(4):604-613. doi: 10.1177/15266028211009272. Epub 2021 Apr 26.
4
Engineering Gels with Time-Evolving Viscoelasticity.
Materials (Basel). 2020 Jan 16;13(2):438. doi: 10.3390/ma13020438.
6
Comparison of frequency and strain-rate domain mechanical characterization.
Sci Rep. 2018 Sep 12;8(1):13697. doi: 10.1038/s41598-018-31737-3.
7
Bioinspired liver scaffold design criteria.
Organogenesis. 2018;14(3):129-146. doi: 10.1080/15476278.2018.1505137. Epub 2018 Aug 29.

本文引用的文献

2
Gelatin-Based Materials in Ocular Tissue Engineering.
Materials (Basel). 2014 Apr 17;7(4):3106-3135. doi: 10.3390/ma7043106.
3
On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids.
PLoS One. 2017 Mar 7;12(3):e0173206. doi: 10.1371/journal.pone.0173206. eCollection 2017.
4
Sample, testing and analysis variables affecting liver mechanical properties: A review.
Acta Biomater. 2016 Nov;45:60-71. doi: 10.1016/j.actbio.2016.08.055. Epub 2016 Sep 3.
5
A practical guide to hydrogels for cell culture.
Nat Methods. 2016 Apr 28;13(5):405-14. doi: 10.1038/nmeth.3839.
6
Nano-in-Micro Self-Reporting Hydrogel Constructs.
J Biomed Nanotechnol. 2015 Aug;11(8):1451-60. doi: 10.1166/jbn.2015.2085.
7
The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.
J Mech Behav Biomed Mater. 2015 Oct;50:150-9. doi: 10.1016/j.jmbbm.2015.06.015. Epub 2015 Jun 24.
9
Tissue stiffness dictates development, homeostasis, and disease progression.
Organogenesis. 2015;11(1):1-15. doi: 10.1080/15476278.2015.1019687.
10
Substrate stress relaxation regulates cell spreading.
Nat Commun. 2015 Feb 19;6:6364. doi: 10.1038/ncomms7365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验