IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1478-1486. doi: 10.1109/TUFFC.2017.2731664. Epub 2017 Jul 31.
Standard clinical ultrasound (US) imaging frequencies are unable to resolve microvascular structures due to the fundamental diffraction limit of US waves. Recent demonstrations of 2-D super-resolution both in vitro and in vivo have demonstrated that fine vascular structures can be visualized using acoustic single bubble localization. Visualization of more complex and disordered 3-D vasculature, such as that of a tumor, requires an acquisition strategy which can additionally localize bubbles in the elevational plane with high precision in order to generate super-resolution in all three dimensions. Furthermore, a particular challenge lies in the need to provide this level of visualization with minimal acquisition time. In this paper, we develop a fast, coherent US imaging tool for microbubble localization in 3-D using a pair of US transducers positioned at 90°. This allowed detection of point scatterer signals in 3-D with average precisions equal to [Formula: see text] in axial and elevational planes, and [Formula: see text] in the lateral plane, compared to the diffraction limited point spread function full-widths at half-maximum of 488, 1188, and [Formula: see text] of the original imaging system with a single transducer. Visualization and velocity mapping of 3-D in vitro structures was demonstrated far beyond the diffraction limit. The capability to measure the complete flow pattern of blood vessels associated with disease at depth would ultimately enable analysis of in vivo microvascular morphology, blood flow dynamics, and occlusions resulting from disease states.
标准的临床超声(US)成像频率由于 US 波的基本衍射限制而无法解析微血管结构。最近在体外和体内都证明了 2-D 超分辨率的演示,表明可以使用声单泡定位来可视化精细的血管结构。要可视化更复杂和无序的 3-D 血管结构,例如肿瘤的血管结构,则需要一种采集策略,该策略可以在垂直平面中以高精度另外定位气泡,以便在所有三个维度上产生超分辨率。此外,特别的挑战在于需要以最小的采集时间提供这种级别的可视化。在本文中,我们开发了一种快速、相干的 US 成像工具,用于使用位于 90°的一对 US 换能器在 3-D 中进行微泡定位。这允许在 3-D 中以平均精度为 [公式:见文本] 在轴向和垂直平面中检测点散射器信号,而在原始成像系统中,单个换能器的半最大值全宽的衍射限制点扩散函数为 [公式:见文本] 。远远超出衍射极限,实现了 3-D 体外结构的可视化和速度映射。在深度处测量与疾病相关的完整血管流型的能力最终将能够分析体内微血管形态、血流动力学和疾病状态引起的阻塞。