IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1272-1277. doi: 10.1109/TUFFC.2020.3028505. Epub 2021 Mar 26.
Recently, super-harmonic ultrasound imaging technology has caused much attention due to its capability of distinguishing microvessels from the tissues surrounding them. However, the fabrication of a dual-frequency confocal transducer is still a challenge. In this work, 270- [Formula: see text] PMN-PT single crystal 1-3 composite and 28- [Formula: see text] PVDF thick film, acting as transmission layer and receiving layer, respectively, are integrated in a novel co-focusing structure. To realize delicate wave propagation control, microwave transmission line theory is introduced to design such structure. Two acoustic filter layers, 13- [Formula: see text] copper layer and 39- [Formula: see text] Epoxy 301 layer, are indispensable and should be added between two piezoelectric layers. Therefore, an acoustic issue can be overcome via an electrical method and the successful achievement of a dual-frequency (5 MHz/30 MHz) ultrasound transducer with a confocal distance of 8 mm can be realized. The super-harmonic ultrasound imaging experiment is conducted using this kind of device. The 3-D image of 110- [Formula: see text]-diameter phantom tube injected with microbubbles can be obtained. These promising results demonstrate that this novel dual-frequency (5 MHz/30 MHz) confocal ultrasound transducer is potentially usable for microvascular medical imaging application in the future.
最近,由于能够区分微脉管与周围组织,超谐波超声成象技术引起了广泛关注。然而,双频共焦换能器的制造仍然是一个挑战。在这项工作中,270- [公式:见文本] PMN-PT 单晶 1-3 复合材料和 28- [公式:见文本] PVDF 厚膜分别作为发射层和接收层,集成在一种新型共聚焦结构中。为了实现精细的波传播控制,引入了微波传输线理论来设计这种结构。两个声学滤波层,13- [公式:见文本] 铜层和 39- [公式:见文本] Epoxy 301 层,是必不可少的,应该添加在两个压电层之间。因此,可以通过电方法克服声问题,并成功实现具有 8mm 共焦距离的双频(5MHz/30MHz)超声换能器。使用这种装置进行了超谐波超声成像实验。可以获得注入微泡的 110- [公式:见文本] 直径幻影管的 3D 图像。这些有希望的结果表明,这种新型双频(5MHz/30MHz)共焦超声换能器在未来可能用于微血管医学成像应用。