Suppr超能文献

环二鸟苷酸中的领结信号传导:简单生化网络中的机器学习

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

作者信息

Yan Jinyuan, Deforet Maxime, Boyle Kerry E, Rahman Rayees, Liang Raymond, Okegbe Chinweike, Dietrich Lars E P, Qiu Weigang, Xavier Joao B

机构信息

Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States of America.

Department of Biological Sciences, Hunter College & Graduate Center, CUNY, New York, NY, United States of America.

出版信息

PLoS Comput Biol. 2017 Aug 2;13(8):e1005677. doi: 10.1371/journal.pcbi.1005677. eCollection 2017 Aug.

Abstract

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3'-5')-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world-the input stimuli-into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility-the output phenotypes. How does the 'uninformed' process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions.

摘要

许多物种的细菌依赖一种简单的分子——细胞内第二信使环二鸟苷酸(Bis-(3'-5')-环二聚鸟苷单磷酸)来做出至关重要的选择:是留在一个地方形成生物膜,还是离开去寻找更好的环境。环二鸟苷酸网络具有领结状结构,它将来自外部世界的许多信号——输入刺激——整合到细胞内环二鸟苷酸水平,进而调节生物膜形成或群体游动性相关基因——输出表型。进化这个“不知情”的过程是如何产生具有正确输入/输出关联的网络,并使细菌做出正确选择的呢?受来自28株铜绿假单胞菌临床分离株以及实验室实验中进化出的菌株的新数据启发,我们提出了一个数学模型,其中环二鸟苷酸网络类似于一个机器学习分类器。这种类比立即暗示了一种通过进化进行学习的机制:通过环二鸟苷酸网络蛋白的渐进变化实现适应,从过去的经验中获取知识,并使细菌能够利用这些知识来指导未来的行为。我们的模型阐明了无处不在的环二鸟苷酸网络难以捉摸的功能,它是与毒力相关的细菌社会特性的关键调节因子。更广泛地说,进化与机器学习之间的联系有助于解释在波动环境中的自然选择如何产生使生物体能够做出复杂决策的网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/454e/5555705/cc83f8fb73d2/pcbi.1005677.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验