Palmquist Karl, Davidson Brad
Department of Biology, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA.
Evodevo. 2017 Jul 25;8:12. doi: 10.1186/s13227-017-0075-9. eCollection 2017.
The evolutionary emergence and diversification of the chordates appear to involve dramatic changes in organ morphogenesis along the left/right axis. However, the ancestral chordate mechanism for establishing lateral asymmetry remains ambiguous. Additionally, links between the initial establishment of lateral asymmetry and subsequent asymmetries in organ morphogenesis are poorly characterized.
To explore asymmetric organ morphogenesis during chordate evolution, we have begun to characterize left/right patterning of the heart and endodermal organs in an invertebrate chordate, . Here, we show that has a laterally asymmetric, right-sided heart. Our data indicate that cardiac lateral asymmetry requires H/K ion flux, but is independent of Nodal signaling. Our pharmacological inhibitor studies show that ion flux is required for polarization of epidermal cilia and neurula rotation and suggest that ion flux functions synergistically with chorion contact to drive cardiac laterality. Live imaging analysis revealed that larval heart progenitor cells undergo a lateral shift without displaying any migratory behaviors. Furthermore, we find that this passive shift corresponds with the emergence of lateral asymmetry in the endoderm, which is also ion flux dependent.
Our data suggest that ion flux promotes laterally asymmetric morphogenesis of the larval endoderm rudiment leading to a passive, Nodal-independent shift in the position of associated heart progenitor cells. These findings help to refine hypotheses regarding ancestral chordate left/right patterning mechanisms and how they have diverged within invertebrate and vertebrate chordate lineages.
脊索动物的进化出现和多样化似乎涉及沿左右轴的器官形态发生的巨大变化。然而,建立侧向不对称的原始脊索动物机制仍不明确。此外,侧向不对称的初始建立与器官形态发生中随后的不对称之间的联系也鲜有描述。
为了探索脊索动物进化过程中的不对称器官形态发生,我们开始在一种无脊椎脊索动物中表征心脏和内胚层器官的左右模式。在这里,我们表明该物种具有侧向不对称的右侧心脏。我们的数据表明,心脏侧向不对称需要H/K离子通量,但与Nodal信号无关。我们的药理学抑制剂研究表明,离子通量是表皮纤毛极化和神经胚旋转所必需的,并表明离子通量与绒毛膜接触协同作用以驱动心脏侧向性。实时成像分析显示,幼虫心脏祖细胞发生侧向移位,但未表现出任何迁移行为。此外,我们发现这种被动移位与内胚层侧向不对称的出现相对应,内胚层侧向不对称也依赖于离子通量。
我们的数据表明,离子通量促进幼虫内胚层原基的侧向不对称形态发生,导致相关心脏祖细胞位置发生被动的、不依赖Nodal的移位。这些发现有助于完善关于原始脊索动物左右模式机制以及它们在无脊椎和脊椎脊索动物谱系中如何分化的假设。