Strader Michael Brad, Hicks Wayne A, Kassa Tigist, Singleton Eileen, Soman Jayashree, Olson John S, Weiss Mitchell J, Mollan Todd L, Wilson Michael T, Alayash Abdu I
From the Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892.
the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251.
J Biol Chem. 2014 Aug 8;289(32):22342-57. doi: 10.1074/jbc.M114.568980. Epub 2014 Jun 17.
A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in β subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, β, and γ subunits with respect to redox reactivity and may have direct implications to α/β hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics.
在变异型人类胎儿和成人血红蛋白(Hb)的血红素口袋内,E11螺旋位置发生了致病性V67M突变。据报道,在人类胎儿血红蛋白汤姆斯河(γ67(E11)Val→Met)的γ亚基和成人血红蛋白(HbA)布里斯托尔 - 阿莱莎(β67(E11)Val→Met)的β亚基中,甲硫氨酸(Met)会发生翻译后修饰变成天冬氨酸(Asp),这与溶血性贫血有关。通过动力学、蛋白质组学和晶体结构分析,我们能够表明,在这两种蛋白质的重组形式中,Met→Asp转化涉及血红素通过其氧合铁(IV)状态的循环。相对于野生型HbA和人类胎儿血红蛋白,突变体向Met和Asp的转化增强了自发自氧化作用,并且随着过氧化氢(H2O2)水平的升高,Asp的水平也升高。使用H2(18)O2,我们验证了(18)O掺入到Asp羧基侧链中,证实了H2O2在Met侧链氧化中的作用。在类似的实验条件下,相应的HbA埃文斯(α62(E11)Val→Met)的αMet(E11)位置没有转化为Asp。三种重组Met(E11)突变体的晶体结构显示出相似的硫醚侧链取向。然而,正如在溶液实验中一样,Hb突变体晶体的自氧化导致电子密度图显示β亚基中形成了Asp(E11),而α亚基中没有。这种新的翻译后修饰突出了人类Hb的α、β和γ亚基在氧化还原反应性方面的不等价性,并且可能对α/β血红蛋白病以及基于Hb的氧化稳定氧治疗药物的设计有直接影响。