Suppr超能文献

硼烯化学气相沉积生长中过渡金属表面乙硼烷分解的动力学途径

Kinetic Pathway of Diborane Decomposition on Transition Metal Surfaces in Borophene Chemical Vapor Deposition Growth.

作者信息

Sun Dan, Song Xianqi, Liu Linlin, Song Chennan, Liu Hanyu, Li Quan, Butler Keith, Xie Congwei, Zhang Zhuhua, Xie Yu

机构信息

Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China.

Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China.

出版信息

J Phys Chem Lett. 2024 Sep 26;15(38):9668-9676. doi: 10.1021/acs.jpclett.4c01770. Epub 2024 Sep 16.

Abstract

The chemical vapor deposition (CVD) method holds promise for the scalable and controlled synthesis of high-quality borophene. However, the current lack of an atomistic understanding of intricate kinetic pathways from precursors to borophene impedes process optimization. Here, we employ first-principles simulations to systematically explore the pyrolytic decomposition pathways of the most used precursor diborane (BH) to borophene on various transition metal surfaces. Our results reveal that BH on various metal substrates exhibits different dissociation behaviors. Meanwhile, the activity of the examined metal substrates is quite anisotropic and surface direction-dependent, where the estimated overall catalytic activity order of these metals is found to be Pd ≈ Pt ≈ Rh > Ir ≈ Ru ≈ Cu > Au ≈ Ag. Our study provides atomistic insights into the dissociation kinetics of diborane precursors on various transition metal surfaces, serving as a guide for experimental growth of borophene.

摘要

化学气相沉积(CVD)方法有望实现高质量硼烯的可扩展和可控合成。然而,目前缺乏对从前驱体到硼烯的复杂动力学途径的原子层面理解,这阻碍了工艺优化。在此,我们采用第一性原理模拟,系统地探索了在各种过渡金属表面上,最常用的前驱体乙硼烷(BH)热解分解为硼烯的途径。我们的结果表明,乙硼烷在各种金属基底上表现出不同的解离行为。同时,所研究的金属基底的活性具有很强的各向异性且依赖于表面方向,其中这些金属的估计总体催化活性顺序为Pd ≈ Pt ≈ Rh > Ir ≈ Ru ≈ Cu > Au ≈ Ag。我们的研究为乙硼烷前驱体在各种过渡金属表面的解离动力学提供了原子层面的见解,为硼烯的实验生长提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验